{"title":"METTL3-Mediated m6A Methylation of USP21 Contributes to Hepatocellular Carcinoma Progression by Stabilizing H2BFS Through Deubiquitination.","authors":"Peng Yao, Xiaozheng Li, Jiasui Chai, Jiejie Dong, Yan Chen, Tong Zhang, Xingren Guo","doi":"10.1007/s10528-024-10992-2","DOIUrl":null,"url":null,"abstract":"<p><p>Deubiquitinases play essential roles in hepatocellular carcinoma (HCC) progression, however, the role of ubiquitin-specific peptidase 21 (USP21) in HCC development remains unclear. The present work aims to analyze the effect of USP21 on tumor property of HCC cells and the underlying mechanism. mRNA expression levels of USP21 and H2BFS were analyzed by quantitative real-time polymerase chain reaction. Protein expression of USP21, E-cadherin, N-cadherin, Vimentin, H2BFS and methyltransferase 3 (METTL3) was assessed by western blotting assay or immunohistochemistry assay. Clonogenicity assay was used to analyze cell proliferation. Flow cytometry assay was performed to quantify apoptotic rate of cells. Wound-healing assay and transwell assay were conducted to analyze cell migration and invasion, respectively. Xenograft mouse model assay was performed to determine the effect of USP21 knockdown on tumor formation. m6A RNA immunoprecipitation assay (MeRIP) was used to analyze the effect of METTL3 silencing on methylated level of USP21. USP21 expression was upregulated in HCC tissues and cells when compared with control groups. USP21 silencing inhibited proliferation, migration and invasion and induced apoptosis of HCC cells, accompanied by the increased E-cadherin protein expression and decreased N-cadherin and Vimentin protein expression. Moreover, USP21 knockdown delayed tumor formation in vivo. USP21 stabilized H2BFS by deubiquitination, and H2BFS overexpression attenuated USP21 silencing-induced effects in HCC cells. Further, METTL3-mediated m6A methylation of USP21. METTL3-mediated m6A methylation of USP21 promoted HCC progression by stabilizing H2BFS through deubiquitination.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10992-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Deubiquitinases play essential roles in hepatocellular carcinoma (HCC) progression, however, the role of ubiquitin-specific peptidase 21 (USP21) in HCC development remains unclear. The present work aims to analyze the effect of USP21 on tumor property of HCC cells and the underlying mechanism. mRNA expression levels of USP21 and H2BFS were analyzed by quantitative real-time polymerase chain reaction. Protein expression of USP21, E-cadherin, N-cadherin, Vimentin, H2BFS and methyltransferase 3 (METTL3) was assessed by western blotting assay or immunohistochemistry assay. Clonogenicity assay was used to analyze cell proliferation. Flow cytometry assay was performed to quantify apoptotic rate of cells. Wound-healing assay and transwell assay were conducted to analyze cell migration and invasion, respectively. Xenograft mouse model assay was performed to determine the effect of USP21 knockdown on tumor formation. m6A RNA immunoprecipitation assay (MeRIP) was used to analyze the effect of METTL3 silencing on methylated level of USP21. USP21 expression was upregulated in HCC tissues and cells when compared with control groups. USP21 silencing inhibited proliferation, migration and invasion and induced apoptosis of HCC cells, accompanied by the increased E-cadherin protein expression and decreased N-cadherin and Vimentin protein expression. Moreover, USP21 knockdown delayed tumor formation in vivo. USP21 stabilized H2BFS by deubiquitination, and H2BFS overexpression attenuated USP21 silencing-induced effects in HCC cells. Further, METTL3-mediated m6A methylation of USP21. METTL3-mediated m6A methylation of USP21 promoted HCC progression by stabilizing H2BFS through deubiquitination.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.