Wearable Temperature Sensor Enhanced Volatilomics Technique for Swift and Convenient Detection of Latrogenic Botulism.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoyang Li, Yufei Yan, Chenyi Hu, Jing Wang, Jinlin Wang, Hao Yang, Daxiang Cui, Wenwen Xin, Shan Gao, Han Jin
{"title":"Wearable Temperature Sensor Enhanced Volatilomics Technique for Swift and Convenient Detection of Latrogenic Botulism.","authors":"Xiaoyang Li, Yufei Yan, Chenyi Hu, Jing Wang, Jinlin Wang, Hao Yang, Daxiang Cui, Wenwen Xin, Shan Gao, Han Jin","doi":"10.1002/advs.202411738","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately assessing potential side effects following botulinum neurotoxin (BoNT) injection remains a formidable challenge. To address this issue, an innovative approach is developed that combines a wearable temperature sensor with a sophisticated volatilomics technique, aimed at facilitating the rapid and convenient prediction of potential physical discomfort related to latrogenic botulism. The investigation identifies five volatile organic compounds (VOCs)-acetone, styrene, ethanol, 2-pentanone, and n-butano-as promising markers indicative of BoNT poisoning. Specifically, a handheld breath analyzer, featuring a yttrium stabilized zirconia (YSZ)-based gas sensor array, alongside a wearable temperature sensor integrated with a bio-compatible methacrylated gelatin (GelMA) sensing film, are developed to simultaneously monitor breath signal variations and body temperature fluctuations. Preliminary animal testing validates the effectiveness of the integrated approach, achieving an accuracy exceeding 91.2% in early detection of physical discomfort associated with BoNT poisoning. These promising findings represent a significant advancement towards the early identification of BoNT-related issues, enabling timely intervention and improved management strategies.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2411738"},"PeriodicalIF":14.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202411738","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately assessing potential side effects following botulinum neurotoxin (BoNT) injection remains a formidable challenge. To address this issue, an innovative approach is developed that combines a wearable temperature sensor with a sophisticated volatilomics technique, aimed at facilitating the rapid and convenient prediction of potential physical discomfort related to latrogenic botulism. The investigation identifies five volatile organic compounds (VOCs)-acetone, styrene, ethanol, 2-pentanone, and n-butano-as promising markers indicative of BoNT poisoning. Specifically, a handheld breath analyzer, featuring a yttrium stabilized zirconia (YSZ)-based gas sensor array, alongside a wearable temperature sensor integrated with a bio-compatible methacrylated gelatin (GelMA) sensing film, are developed to simultaneously monitor breath signal variations and body temperature fluctuations. Preliminary animal testing validates the effectiveness of the integrated approach, achieving an accuracy exceeding 91.2% in early detection of physical discomfort associated with BoNT poisoning. These promising findings represent a significant advancement towards the early identification of BoNT-related issues, enabling timely intervention and improved management strategies.

可穿戴式温度传感器增强了快速便捷地检测潜伏性肉毒杆菌的挥发性物质组学技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信