Enhancing Field-Like Efficiency Via Interface Engineering with Sub-Atomic Layer Ta Insertion

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuanghai Wang, Kun He, Caitao Li, Yongkang Xu, Xingze Dai, Taikun Wang, Yu Liu, Yao Li, Yongbing Xu, Liang He
{"title":"Enhancing Field-Like Efficiency Via Interface Engineering with Sub-Atomic Layer Ta Insertion","authors":"Shuanghai Wang,&nbsp;Kun He,&nbsp;Caitao Li,&nbsp;Yongkang Xu,&nbsp;Xingze Dai,&nbsp;Taikun Wang,&nbsp;Yu Liu,&nbsp;Yao Li,&nbsp;Yongbing Xu,&nbsp;Liang He","doi":"10.1002/advs.202412409","DOIUrl":null,"url":null,"abstract":"<p>The prevailing research emphasis has been on reducing the critical switching current density (<i>J</i><sub>c</sub>) by enhancing the damping-like efficiency (<i>β</i><sub>DL</sub>). However, recent studies have shown that the field-like efficiency (<i>β</i><sub>FL</sub>) can also play a major role in reducing <i>J</i><sub>c</sub>. In this study, the central inversion asymmetry of Pt-Co is significantly enhanced through interface engineering at the sub-atomic layer of Ta, thereby inducing substantial alterations in the <i>β</i><sub>FL</sub> associated with the interface. The <i>β</i><sub>FL</sub> has shown a 123% increase, from −1.66 Oe/(MA cm<sup>−</sup><sup>2</sup>) to -3.8 Oe/(MA cm<sup>−</sup><sup>2</sup>). As a result, the multilayered Ta/Pt/Ta (0.3 nm insertion)/Co/Ta structure leads to a notable decrease in <i>J</i><sub>c</sub>, exceeding a remarkable 90% compared to the simpler Ta/Pt/Co/Ta structure, ultimately achieving a significantly low value of 2.7 MA cm<sup>−</sup><sup>2</sup>. These findings pave the way for the development of highly efficient and energy-saving spin-orbit torque (SOT)-based spintronic devices, where further optimizations in interface engineering can unlock even greater potential in terms of reduced power consumption and enhanced performance.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 6","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202412409","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202412409","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The prevailing research emphasis has been on reducing the critical switching current density (Jc) by enhancing the damping-like efficiency (βDL). However, recent studies have shown that the field-like efficiency (βFL) can also play a major role in reducing Jc. In this study, the central inversion asymmetry of Pt-Co is significantly enhanced through interface engineering at the sub-atomic layer of Ta, thereby inducing substantial alterations in the βFL associated with the interface. The βFL has shown a 123% increase, from −1.66 Oe/(MA cm2) to -3.8 Oe/(MA cm2). As a result, the multilayered Ta/Pt/Ta (0.3 nm insertion)/Co/Ta structure leads to a notable decrease in Jc, exceeding a remarkable 90% compared to the simpler Ta/Pt/Co/Ta structure, ultimately achieving a significantly low value of 2.7 MA cm2. These findings pave the way for the development of highly efficient and energy-saving spin-orbit torque (SOT)-based spintronic devices, where further optimizations in interface engineering can unlock even greater potential in terms of reduced power consumption and enhanced performance.

Abstract Image

通过插入亚原子层 Ta 的界面工程提高场样效率。
目前的研究重点是通过提高类阻尼效率(βDL)来降低临界开关电流密度(Jc)。然而,最近的研究表明,田样效率(βFL)也可以在降低Jc中发挥重要作用。在本研究中,通过在Ta的亚原子层进行界面工程,Pt-Co的中心倒置不对称性得到了显著增强,从而导致与界面相关的βFL发生了实质性的变化。βFL增加了123%,从-1.66 Oe/(MA cm- 2)增加到-3.8 Oe/(MA cm- 2)。因此,多层Ta/Pt/Ta(插入0.3 nm)/Co/Ta结构导致Jc显著降低,比简单的Ta/Pt/Co/Ta结构降低了90%,最终达到2.7 MA cm- 2的显著低值。这些发现为开发高效节能的基于自旋轨道扭矩(SOT)的自旋电子器件铺平了道路,其中界面工程的进一步优化可以在降低功耗和提高性能方面释放出更大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信