Heterostructured S-Scheme BiOBr/Cu2O Nanocomposite for Photocatalytic Degradation of Glyphosate.

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2024-11-21 eCollection Date: 2024-12-10 DOI:10.1021/acsomega.4c07304
Albert Gonzalez, Abelline Fionah, Gbemisola J Bamiduro, Elsayed M Zahran
{"title":"Heterostructured S-Scheme BiOBr/Cu<sub>2</sub>O Nanocomposite for Photocatalytic Degradation of Glyphosate.","authors":"Albert Gonzalez, Abelline Fionah, Gbemisola J Bamiduro, Elsayed M Zahran","doi":"10.1021/acsomega.4c07304","DOIUrl":null,"url":null,"abstract":"<p><p>Metal oxide semiconductor-activated photocatalysis has become a promising sustainable technology for the mitigation of emerging organic pollutants. The rational design of a photocatalyst heterojunction allows the degradation of a broad range of organic contaminants. Herein, we optimized hydrothermal approaches for the facial synthesis of well-defined BiOBr/Cu<sub>2</sub>O heterojunction photocatalysts. Tuning the synthesis condition enhanced the interfacing of BiOBr and Cu<sub>2</sub>O nanostructures in the heterojunction photocatalyst, as confirmed by STEM, TEM, XPS, XRD, and BET analysis. The optimized BiOBr/Cu<sub>2</sub>O heterostructured photocatalyst demonstrated substantial activity in the degradation of both anionic and cationic dyes compared to the individual components. The enhanced nanocomposite exhibited complete degradation of glyphosate in 10 min of light irradiation and demonstrated high stability after five photocatalytic cycles. Our mechanistic and photoelectrochemical studies suggest that establishing an S-scheme heterojunction between BiOBr and Cu<sub>2</sub>O enhances the separation of photogenerated charge carriers and expands the redox potentials of the nanocomposite to allow high catalytic efficiency. These findings indicate that tuning the design of metal oxide heterojunctions promises applications in the remediation of a wide range of organic contaminants.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 49","pages":"48512-48523"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635517/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c07304","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal oxide semiconductor-activated photocatalysis has become a promising sustainable technology for the mitigation of emerging organic pollutants. The rational design of a photocatalyst heterojunction allows the degradation of a broad range of organic contaminants. Herein, we optimized hydrothermal approaches for the facial synthesis of well-defined BiOBr/Cu2O heterojunction photocatalysts. Tuning the synthesis condition enhanced the interfacing of BiOBr and Cu2O nanostructures in the heterojunction photocatalyst, as confirmed by STEM, TEM, XPS, XRD, and BET analysis. The optimized BiOBr/Cu2O heterostructured photocatalyst demonstrated substantial activity in the degradation of both anionic and cationic dyes compared to the individual components. The enhanced nanocomposite exhibited complete degradation of glyphosate in 10 min of light irradiation and demonstrated high stability after five photocatalytic cycles. Our mechanistic and photoelectrochemical studies suggest that establishing an S-scheme heterojunction between BiOBr and Cu2O enhances the separation of photogenerated charge carriers and expands the redox potentials of the nanocomposite to allow high catalytic efficiency. These findings indicate that tuning the design of metal oxide heterojunctions promises applications in the remediation of a wide range of organic contaminants.

用于草甘膦光催化降解的异质结构 S-Scheme BiOBr/Cu2O 纳米复合材料。
金属氧化物半导体活化光催化技术已成为一种前景广阔的可持续技术,可用于缓解新出现的有机污染物。合理设计光催化剂异质结可以降解多种有机污染物。在此,我们优化了水热法,以面合成定义明确的 BiOBr/Cu2O 异质结光催化剂。通过 STEM、TEM、XPS、XRD 和 BET 分析证实,调整合成条件增强了异质结光催化剂中 BiOBr 和 Cu2O 纳米结构的界面。与单个成分相比,优化的 BiOBr/Cu2O 异质结构光催化剂在降解阴离子和阳离子染料方面都表现出了很高的活性。这种增强型纳米复合材料在 10 分钟的光照射下就能完全降解草甘膦,并在五个光催化周期后表现出很高的稳定性。我们的机理和光电化学研究表明,在 BiOBr 和 Cu2O 之间建立 S 型异质结可增强光生电荷载流子的分离,扩大纳米复合材料的氧化还原电位,从而提高催化效率。这些发现表明,调整金属氧化物异质结的设计有望应用于多种有机污染物的修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信