{"title":"Single-parameter concrete carbonation model for varying environmental exposure conditions","authors":"Rakesh Gopinath, Mark Alexander, Hans Beushausen","doi":"10.1617/s11527-024-02546-0","DOIUrl":null,"url":null,"abstract":"<div><p>Carbonation-induced reinforced steel concrete corrosion is a prominent concern related to engineering design and maintenance. The Durability Index (DI) approach was developed in South Africa to address this concern and enhance the durability performance of reinforced concrete structures. This approach relies on durability index tests, which are associated with transport mechanisms linked to specific deterioration processes. The carbonation of concrete is primarily influenced by the microstructure and transport characteristics of the concrete. Environmental exposure conditions also influence the rate of carbonation. The focus of the research reported here was to develop a carbonation model that could predict the rate of carbonation of concrete exposed to, or sheltered from, rain, with the permeability coefficient (<i>k</i>) from the Oxygen Permeability Index (OPI) test (DI test) as the key unifying variable. The model development was based on natural carbonation data and the drying profiles (experimentally measured) of 48 different concretes. Concrete microstructure was varied by varying the water-to-cement ratio, curing conditions, and by using SCMs. The resulting carbonation model was able to predict the rate of carbonation of concrete, allowing for different exposure conditions. A unique feature of this model is its use of a single material property, the '<i>k</i>' value, to effectively address both CO<sub>2</sub> diffusion and the drying process within concrete. The model displayed sensitivity towards the influence of variation in CO<sub>2</sub> concentration, concrete microstructure, and the environmental exposure conditions, making this a simplified, effective and practical concrete carbonation prediction model.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-024-02546-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02546-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbonation-induced reinforced steel concrete corrosion is a prominent concern related to engineering design and maintenance. The Durability Index (DI) approach was developed in South Africa to address this concern and enhance the durability performance of reinforced concrete structures. This approach relies on durability index tests, which are associated with transport mechanisms linked to specific deterioration processes. The carbonation of concrete is primarily influenced by the microstructure and transport characteristics of the concrete. Environmental exposure conditions also influence the rate of carbonation. The focus of the research reported here was to develop a carbonation model that could predict the rate of carbonation of concrete exposed to, or sheltered from, rain, with the permeability coefficient (k) from the Oxygen Permeability Index (OPI) test (DI test) as the key unifying variable. The model development was based on natural carbonation data and the drying profiles (experimentally measured) of 48 different concretes. Concrete microstructure was varied by varying the water-to-cement ratio, curing conditions, and by using SCMs. The resulting carbonation model was able to predict the rate of carbonation of concrete, allowing for different exposure conditions. A unique feature of this model is its use of a single material property, the 'k' value, to effectively address both CO2 diffusion and the drying process within concrete. The model displayed sensitivity towards the influence of variation in CO2 concentration, concrete microstructure, and the environmental exposure conditions, making this a simplified, effective and practical concrete carbonation prediction model.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.