Potential effect of Cattaneo–Christov heat- and mass-flux analysis for Maxwell fluid near a squeezed surface

IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
T. Salahuddin, Zoehib Mahmood, Muhammad Awais, Mair Khan, Basem Al Awan
{"title":"Potential effect of Cattaneo–Christov heat- and mass-flux analysis for Maxwell fluid near a squeezed surface","authors":"T. Salahuddin,&nbsp;Zoehib Mahmood,&nbsp;Muhammad Awais,&nbsp;Mair Khan,&nbsp;Basem Al Awan","doi":"10.1007/s11043-024-09755-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we examine the flow of a convective Maxwell fluid through a channel with a sensor surface placed between two parallel plates, for applications in cooling electronic devices, microfluidics, environmental monitoring, and the oil and gas industries. The flow is squeezed from one side, and the channel surface is instrumented with a microcantilever sensor. The heat- and mass-transfer equations are formulated using the Cattaneo–Christov model, to incorporate heat absorption and a chemical reaction. Boundary-layer approximations are considered, and similarity transforms convert the partial differential equations into linear ordinary differential equations, which are solved numerically. The effects of various parameters on velocity, concentration, and temperature gradients are analyzed. Results show that the velocity of the Maxwell fluid decreases with higher thermal and solutal Grashof numbers and the Maxwell fluid parameter. The thermal-relaxation parameter and heat-absorption coefficient contribute to a reduced temperature distribution. The concentration decreases with variations in the solutal relaxation coefficient and reaction parameter. Physical quantities, such as skin friction, decline due to the Maxwell fluid parameter. A comparison with previously published results is also included.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"29 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09755-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we examine the flow of a convective Maxwell fluid through a channel with a sensor surface placed between two parallel plates, for applications in cooling electronic devices, microfluidics, environmental monitoring, and the oil and gas industries. The flow is squeezed from one side, and the channel surface is instrumented with a microcantilever sensor. The heat- and mass-transfer equations are formulated using the Cattaneo–Christov model, to incorporate heat absorption and a chemical reaction. Boundary-layer approximations are considered, and similarity transforms convert the partial differential equations into linear ordinary differential equations, which are solved numerically. The effects of various parameters on velocity, concentration, and temperature gradients are analyzed. Results show that the velocity of the Maxwell fluid decreases with higher thermal and solutal Grashof numbers and the Maxwell fluid parameter. The thermal-relaxation parameter and heat-absorption coefficient contribute to a reduced temperature distribution. The concentration decreases with variations in the solutal relaxation coefficient and reaction parameter. Physical quantities, such as skin friction, decline due to the Maxwell fluid parameter. A comparison with previously published results is also included.

挤压表面附近麦克斯韦流体的卡塔尼奥-克里斯托夫热流和质量流分析的潜在影响
在本文中,我们研究了对流麦克斯韦流体通过两个平行板之间放置传感器表面的通道的流动,用于冷却电子设备,微流体,环境监测以及石油和天然气工业。流动从一侧挤压,通道表面用微悬臂传感器进行测量。传热和传质方程采用Cattaneo-Christov模型,将吸热和化学反应结合起来。考虑边界层近似,利用相似变换将偏微分方程转化为线性常微分方程,用数值方法求解。分析了不同参数对速度梯度、浓度梯度和温度梯度的影响。结果表明,随着热、溶质格拉西夫数和麦克斯韦流体参数的增大,麦克斯韦流体的速度减小。热松弛参数和吸热系数有助于降低温度分布。浓度随溶质松弛系数和反应参数的变化而降低。物理量,如表面摩擦,由于麦克斯韦流体参数而下降。还包括与先前发表的结果的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics of Time-Dependent Materials
Mechanics of Time-Dependent Materials 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
8.00%
发文量
47
审稿时长
>12 weeks
期刊介绍: Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties. The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信