Fuzzy Min-Max Classifier in Cybersecurity Applications

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
K. S. Sarin, R. E. Kolomnikov, M. O. Svetlakov, I. A. Hodashinsky
{"title":"Fuzzy Min-Max Classifier in Cybersecurity Applications","authors":"K. S. Sarin,&nbsp;R. E. Kolomnikov,&nbsp;M. O. Svetlakov,&nbsp;I. A. Hodashinsky","doi":"10.3103/S0005105524700250","DOIUrl":null,"url":null,"abstract":"<p>A modified fuzzy min-max classifier is presented that differs from the original in the way that the hyperbox expansion operation is performed. The classifier has been tested on the solution of cybersecurity problems, such as detecting spam, phishing sites and attacks on network connections. The results of experiments results showed an improvement in the accuracy relative to the original fuzzy min-max classifier. Comparisons with six alternative incremental learning classifiers showed competitive results on the false acceptance rate, the false reject rate, and the F1-score values.</p>","PeriodicalId":42995,"journal":{"name":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","volume":"58 5","pages":"299 - 309"},"PeriodicalIF":0.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0005105524700250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

A modified fuzzy min-max classifier is presented that differs from the original in the way that the hyperbox expansion operation is performed. The classifier has been tested on the solution of cybersecurity problems, such as detecting spam, phishing sites and attacks on network connections. The results of experiments results showed an improvement in the accuracy relative to the original fuzzy min-max classifier. Comparisons with six alternative incremental learning classifiers showed competitive results on the false acceptance rate, the false reject rate, and the F1-score values.

Abstract Image

本文介绍了一种改进的模糊最小最大分类器,它与原始分类器的不同之处在于执行超箱扩展操作的方式。该分类器已在解决网络安全问题(如检测垃圾邮件、钓鱼网站和网络连接攻击)方面进行了测试。实验结果表明,相对于原始的模糊最小最大分类器,该分类器的准确率有所提高。与其他六种增量学习分类器的比较结果显示,在错误接受率、错误拒绝率和 F1 分数值方面,该分类器都具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
18
期刊介绍: Automatic Documentation and Mathematical Linguistics  is an international peer reviewed journal that covers all aspects of automation of information processes and systems, as well as algorithms and methods for automatic language analysis. Emphasis is on the practical applications of new technologies and techniques for information analysis and processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信