Sustainable Energy Solutions: Optimizing Biodiesel Production through Heterogeneous Catalysis Using ZnO/SiO2 from Agricultural Waste

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL
Abd Rahman Marlan, Mohammad Nahid Siddiqui, Tawfik A. Saleh, Suriati Eka Putri
{"title":"Sustainable Energy Solutions: Optimizing Biodiesel Production through Heterogeneous Catalysis Using ZnO/SiO2 from Agricultural Waste","authors":"Abd Rahman Marlan,&nbsp;Mohammad Nahid Siddiqui,&nbsp;Tawfik A. Saleh,&nbsp;Suriati Eka Putri","doi":"10.1007/s10562-024-04907-4","DOIUrl":null,"url":null,"abstract":"<div><p>The escalating global energy demand, predominantly satisfied by fossil fuels, has led to severe environmental repercussions, including the emission of harmful pollutants and the depletion of non-renewable resources. This study explores the synthesis of green heterogeneous ZnO/SiO<sub>2</sub> derived from date leaves ash (DLA) as an innovative catalyst for biodiesel production, specifically using waste cooking oil (WCO) as feedstock. WCO, a prevalent byproduct in the food industry, poses significant environmental challenges, yet it offers a valuable opportunity for sustainable energy generation. The transesterification process in this study highlights additional techniques to improve the product by focusing on the intermediate species, which is essential to enhance the conversion of triglycerides in WCO to biodiesel, on the other hand enhanced by the application of the synthesized catalyst, which exhibits superior catalytic activity and stability. The research also highlights the advantages of using heterogeneous catalysts over traditional homogeneous catalysts, including ease of separation, reusability, and reduced environmental impact. The findings demonstrate that the DLA-derived ZnO/SiO<sub>2</sub> catalyst not only improves biodiesel yield but also contributes to waste management by repurposing WCO, thereby mitigating its adverse effects on public health and the environment. This work underscores the potential of green chemistry in developing efficient, eco-friendly catalysts that can significantly advance the biodiesel industry. This research advocates the integration of sustainable practices in energy production, emphasizing the importance of renewable resources in addressing the pressing challenges of energy sustainability and environmental protection. Ultimately, several highlights of this research have led to over 95% of WCO being converted to biodiesel using ZnO/SiO<sub>2</sub>-30 at 60 °C.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04907-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating global energy demand, predominantly satisfied by fossil fuels, has led to severe environmental repercussions, including the emission of harmful pollutants and the depletion of non-renewable resources. This study explores the synthesis of green heterogeneous ZnO/SiO2 derived from date leaves ash (DLA) as an innovative catalyst for biodiesel production, specifically using waste cooking oil (WCO) as feedstock. WCO, a prevalent byproduct in the food industry, poses significant environmental challenges, yet it offers a valuable opportunity for sustainable energy generation. The transesterification process in this study highlights additional techniques to improve the product by focusing on the intermediate species, which is essential to enhance the conversion of triglycerides in WCO to biodiesel, on the other hand enhanced by the application of the synthesized catalyst, which exhibits superior catalytic activity and stability. The research also highlights the advantages of using heterogeneous catalysts over traditional homogeneous catalysts, including ease of separation, reusability, and reduced environmental impact. The findings demonstrate that the DLA-derived ZnO/SiO2 catalyst not only improves biodiesel yield but also contributes to waste management by repurposing WCO, thereby mitigating its adverse effects on public health and the environment. This work underscores the potential of green chemistry in developing efficient, eco-friendly catalysts that can significantly advance the biodiesel industry. This research advocates the integration of sustainable practices in energy production, emphasizing the importance of renewable resources in addressing the pressing challenges of energy sustainability and environmental protection. Ultimately, several highlights of this research have led to over 95% of WCO being converted to biodiesel using ZnO/SiO2-30 at 60 °C.

Graphical Abstract

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信