Metal oxide layer removal is an important part of steel processing in the automotive and mechanical engineering industry. Laser cleaning of metal oxide layer has attracted extensive attention for its selectivity and environmental protection. However, laser cleaning efficiency and high cleaning threshold remain challenges for industrial applications. To address these issues, a new electromagnetic induction heating assisted laser cleaning method is proposed. This innovative approach increases the cleaning efficiency and reduces the laser cleaning threshold via elevating surface temperature. With this novel technology, the laser cleaning threshold of metal oxide layer is reduced from 5.5 J/cm² to 3.3 J/cm². Oxygen content also decreases by 68.1% with the assistance of electromagnetic induction heating at the laser fluence of 3.3 J/cm². To validate the industrial applications of the electromagnetic heating assisted laser cleaning, a rusty steel plate is used as a sample. At the same laser fluence, the time for the rust layer reaches its evaporation temperature is shortened when assisted by the electromagnetic induction heating. The cleaning time is reduced by approximately 50% at the laser fluence of 3.3 J/cm².