Global Well-Posedness and Asymptotic Behavior of Strong Solutions to an Initial-Boundary Value Problem of 3D Full Compressible MHD Equations

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Hao Xu, Hong Ye, Jianwen Zhang
{"title":"Global Well-Posedness and Asymptotic Behavior of Strong Solutions to an Initial-Boundary Value Problem of 3D Full Compressible MHD Equations","authors":"Hao Xu,&nbsp;Hong Ye,&nbsp;Jianwen Zhang","doi":"10.1007/s00021-024-00915-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with an initial-boundary value problem of full compressible magnetohydrodynamics (MHD) equations on 3D bounded domains subject to non-slip boundary condition for velocity, perfectly conducting boundary condition for magnetic field, and homogeneous Dirichlet boundary condition for temperature. The global well-posedness of strong solutions with initial vacuum is established and the exponential decay estimates of the solutions are obtained, provided the initial total energy is suitably small. More interestingly, it is shown that for <span>\\(p\\in (3,6)\\)</span>, the <span>\\(L^p\\)</span>-norm of the gradient of density remains uniformly bounded for all <span>\\(t\\ge 0\\)</span>. This is in sharp contrast to that in (Chen et al. in Global well-posedness of full compressible magnetohydrodynamic system in 3D bounded domains with large oscillations and vacuum. arXiv:2208.04480, Li et al. in Global existence of classical solutions to full compressible Navier–Stokes equations with large oscillations and vacuum in 3D bounded domains. arXiv:2207.00441), where the exponential growth of the gradient of density in <span>\\(L^p\\)</span>-norm was explored.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00915-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with an initial-boundary value problem of full compressible magnetohydrodynamics (MHD) equations on 3D bounded domains subject to non-slip boundary condition for velocity, perfectly conducting boundary condition for magnetic field, and homogeneous Dirichlet boundary condition for temperature. The global well-posedness of strong solutions with initial vacuum is established and the exponential decay estimates of the solutions are obtained, provided the initial total energy is suitably small. More interestingly, it is shown that for \(p\in (3,6)\), the \(L^p\)-norm of the gradient of density remains uniformly bounded for all \(t\ge 0\). This is in sharp contrast to that in (Chen et al. in Global well-posedness of full compressible magnetohydrodynamic system in 3D bounded domains with large oscillations and vacuum. arXiv:2208.04480, Li et al. in Global existence of classical solutions to full compressible Navier–Stokes equations with large oscillations and vacuum in 3D bounded domains. arXiv:2207.00441), where the exponential growth of the gradient of density in \(L^p\)-norm was explored.

三维全可压缩多流体力学方程初始边界值问题的全局好求和强解渐近行为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信