Multiscale engineering of anode catalyst layers in proton exchange membrane water electrolyzers

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qianqian Liu, Yanfei Wang, Xiao Liang, Hui Chen and Xiaoxin Zou
{"title":"Multiscale engineering of anode catalyst layers in proton exchange membrane water electrolyzers","authors":"Qianqian Liu, Yanfei Wang, Xiao Liang, Hui Chen and Xiaoxin Zou","doi":"10.1039/D4QM00842A","DOIUrl":null,"url":null,"abstract":"<p >Proton exchange membrane water electrolyzers (PEMWEs) play a key role in promoting the development of the clean hydrogen energy industry and accelerating the achievement of carbon neutrality goals due to their advantages of high efficiency, low energy consumption, ease of integration and fast response. In PEMWEs, the water oxidation reaction in the anode catalytic layer is the core process, and its catalytic efficiency directly determines the performance and stability of the electrolyzers. Therefore, enhancement of reactant transport, electron/proton transfer, and oxygen release by cross-scale optimisation of the anode catalytic layer is crucial for improving the efficiency of PEMWEs. This article highlights recent advances in optimizing the anode catalytic layer of PEMWEs through multi-scale engineering strategies. We first introduce the basic structure of PEMWEs and the importance of the anode catalyst. Subsequently, we discuss in detail the multiscale optimisation strategy of the anode catalyst layer, including the design of active sites at the atomic scale, the morphology regulation at the nano/micro scale, the catalytic layer optimization at the macroscopic scale and the comprehensive synergistic effect of multiscale engineering. Finally, we conclude and look forward to the existing challenges and future research directions for optimising anode catalyst layers by multiscale engineering.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 30-44"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00842a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Proton exchange membrane water electrolyzers (PEMWEs) play a key role in promoting the development of the clean hydrogen energy industry and accelerating the achievement of carbon neutrality goals due to their advantages of high efficiency, low energy consumption, ease of integration and fast response. In PEMWEs, the water oxidation reaction in the anode catalytic layer is the core process, and its catalytic efficiency directly determines the performance and stability of the electrolyzers. Therefore, enhancement of reactant transport, electron/proton transfer, and oxygen release by cross-scale optimisation of the anode catalytic layer is crucial for improving the efficiency of PEMWEs. This article highlights recent advances in optimizing the anode catalytic layer of PEMWEs through multi-scale engineering strategies. We first introduce the basic structure of PEMWEs and the importance of the anode catalyst. Subsequently, we discuss in detail the multiscale optimisation strategy of the anode catalyst layer, including the design of active sites at the atomic scale, the morphology regulation at the nano/micro scale, the catalytic layer optimization at the macroscopic scale and the comprehensive synergistic effect of multiscale engineering. Finally, we conclude and look forward to the existing challenges and future research directions for optimising anode catalyst layers by multiscale engineering.

Abstract Image

质子交换膜水电解槽阳极催化剂层的多尺度工程设计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信