{"title":"Halogen-bond-assisted radical remote difunctionalization of bicyclo[1.1.1]butane skeletons†","authors":"Hui Liu, Zhenda Fu, Xingwei Li and Songjie Yu","doi":"10.1039/D4GC05166A","DOIUrl":null,"url":null,"abstract":"<p >Transition-metal-free radical remote difunctionalization of bicyclo[1.1.1]butane skeletons in both two- and three-component fashions is presented. The reactions proceed <em>via</em> halogen-bond-assisted polyfluoroalkyl radical addition to newly designed 1-vinylbicyclo[1.1.1]pentanes, followed by strain-release-driven C–C bond cleavage to generate a strained cyclobutylmethyl radical. In the two-component reaction, iodine atom transfer to the resulting cyclobutylmethyl radical with polyfluoroiodides forms a broad array of strained 1,6-polyfluorocarboiodinated products, while boron atom transfer with bis(catecholato)diboron releases various strained 1,6-polyfluorocarboborylated products in the three-component reaction. This redox-neutral reaction features mild conditions, ease of operation, high atom economy, functional group tolerance, and a broad substrate scope, and offers a practical and sustainable approach for the synthesis of a range of challenging polyfluoroalkylated cyclobutane skeletons containing iodine and boron as versatile transformation handles for further useful derivatizations.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 1","pages":" 256-263"},"PeriodicalIF":9.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d4gc05166a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Transition-metal-free radical remote difunctionalization of bicyclo[1.1.1]butane skeletons in both two- and three-component fashions is presented. The reactions proceed via halogen-bond-assisted polyfluoroalkyl radical addition to newly designed 1-vinylbicyclo[1.1.1]pentanes, followed by strain-release-driven C–C bond cleavage to generate a strained cyclobutylmethyl radical. In the two-component reaction, iodine atom transfer to the resulting cyclobutylmethyl radical with polyfluoroiodides forms a broad array of strained 1,6-polyfluorocarboiodinated products, while boron atom transfer with bis(catecholato)diboron releases various strained 1,6-polyfluorocarboborylated products in the three-component reaction. This redox-neutral reaction features mild conditions, ease of operation, high atom economy, functional group tolerance, and a broad substrate scope, and offers a practical and sustainable approach for the synthesis of a range of challenging polyfluoroalkylated cyclobutane skeletons containing iodine and boron as versatile transformation handles for further useful derivatizations.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.