Adaptive Measurement Model-Based Fusion of Capacitive Proximity Sensor and LiDAR for Improved Mobile Robot Perception

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Hyunchang Kang;Hongsik Yim;Hyukjae Sung;Hyouk Ryeol Choi
{"title":"Adaptive Measurement Model-Based Fusion of Capacitive Proximity Sensor and LiDAR for Improved Mobile Robot Perception","authors":"Hyunchang Kang;Hongsik Yim;Hyukjae Sung;Hyouk Ryeol Choi","doi":"10.1109/LRA.2024.3511432","DOIUrl":null,"url":null,"abstract":"This study introduces a novel algorithm that combines a custom-developed capacitive proximity sensor with LiDAR. This integration targets the limitations of using single-sensor systems for mobile robot perception. Our approach deals with the non-Gaussian distribution that arises during the nonlinear transformation of capacitive sensor data into distance measurements. The non-Gaussian distribution resulting from this nonlinear transformation is linearized using a first-order Taylor approximation, creating a measurement model unique to our sensor. This method helps establish a linear relationship between capacitance values and their corresponding distance measurements. Assuming that the capacitance's standard deviation (\n<inline-formula><tex-math>$\\sigma$</tex-math></inline-formula>\n) remains constant, it is modeled as a distance function. By linearizing the capacitance data and synthesizing it with LiDAR data using Gaussian methods, we fuse the sensor information to enhance integration. This results in more precise and robust distance measurements than those obtained through traditional Extended Kalman Filter (EKF) and Adaptive Extended Kalman Filter (AEKF) methods. The proposed algorithm is designed for real-time data processing, significantly improving the robot's state estimation accuracy and stability in various environments. This study offers a reliable method for positional estimation of mobile robots, showcasing outstanding fusion performance in complex settings.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 1","pages":"836-843"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10777500/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a novel algorithm that combines a custom-developed capacitive proximity sensor with LiDAR. This integration targets the limitations of using single-sensor systems for mobile robot perception. Our approach deals with the non-Gaussian distribution that arises during the nonlinear transformation of capacitive sensor data into distance measurements. The non-Gaussian distribution resulting from this nonlinear transformation is linearized using a first-order Taylor approximation, creating a measurement model unique to our sensor. This method helps establish a linear relationship between capacitance values and their corresponding distance measurements. Assuming that the capacitance's standard deviation ( $\sigma$ ) remains constant, it is modeled as a distance function. By linearizing the capacitance data and synthesizing it with LiDAR data using Gaussian methods, we fuse the sensor information to enhance integration. This results in more precise and robust distance measurements than those obtained through traditional Extended Kalman Filter (EKF) and Adaptive Extended Kalman Filter (AEKF) methods. The proposed algorithm is designed for real-time data processing, significantly improving the robot's state estimation accuracy and stability in various environments. This study offers a reliable method for positional estimation of mobile robots, showcasing outstanding fusion performance in complex settings.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信