Constrained Multiobjective Optimization via Relaxations on Both Constraints and Objectives

Fei Ming;Bing Xue;Mengjie Zhang;Wenyin Gong;Huixiang Zhen
{"title":"Constrained Multiobjective Optimization via Relaxations on Both Constraints and Objectives","authors":"Fei Ming;Bing Xue;Mengjie Zhang;Wenyin Gong;Huixiang Zhen","doi":"10.1109/TAI.2024.3454025","DOIUrl":null,"url":null,"abstract":"Since most multiobjective optimization problems in real-world applications contain constraints, constraint-handling techniques (CHTs) are necessary for a multiobjective optimizer. However, existing CHTs give no relaxation to objectives, resulting in the elimination of infeasible dominated solutions that are promising (potentially useful but inferior) for detecting feasible regions and the constrained Pareto front (CPF). To overcome this drawback, in this work, we propose an objective relaxation technique that can preserve promising by relaxing objective function values, i.e., convergence, through an adaptively adjusted relaxation factor. Further, we develop a new constrained multiobjective optimization evolutionary algorithm (CMOEA) based on relaxations on both constraints and objectives. The proposed algorithm evolves one population by the constraint relaxation technique to preserve promising infeasible solutions and the other population by both objective and constraint relaxation techniques to preserve promising infeasible dominated solutions. In this way, our method can overcome the drawback of existing CHTs. Besides, an archive update strategy is designed to maintain encountered feasible solutions by the two populations to approximate the CPF. Experiments on challenging benchmark problems and real-world problems have demonstrated the superiority or at least competitiveness of our proposed CMOEA. Moreover, to verify the generality of the objective relaxation technique, we embed it into two existing CMOEA frameworks and the results show that it can significantly improve the performance in handling challenging problems.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 12","pages":"6709-6722"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10665969/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Since most multiobjective optimization problems in real-world applications contain constraints, constraint-handling techniques (CHTs) are necessary for a multiobjective optimizer. However, existing CHTs give no relaxation to objectives, resulting in the elimination of infeasible dominated solutions that are promising (potentially useful but inferior) for detecting feasible regions and the constrained Pareto front (CPF). To overcome this drawback, in this work, we propose an objective relaxation technique that can preserve promising by relaxing objective function values, i.e., convergence, through an adaptively adjusted relaxation factor. Further, we develop a new constrained multiobjective optimization evolutionary algorithm (CMOEA) based on relaxations on both constraints and objectives. The proposed algorithm evolves one population by the constraint relaxation technique to preserve promising infeasible solutions and the other population by both objective and constraint relaxation techniques to preserve promising infeasible dominated solutions. In this way, our method can overcome the drawback of existing CHTs. Besides, an archive update strategy is designed to maintain encountered feasible solutions by the two populations to approximate the CPF. Experiments on challenging benchmark problems and real-world problems have demonstrated the superiority or at least competitiveness of our proposed CMOEA. Moreover, to verify the generality of the objective relaxation technique, we embed it into two existing CMOEA frameworks and the results show that it can significantly improve the performance in handling challenging problems.
通过对约束条件和目标的松弛实现约束多目标优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信