Optimal Control of Stochastic Markovian Jump Systems With Wiener and Poisson Noises: Two Reinforcement Learning Approaches

Zhiguo Yan;Tingkun Sun;Guolin Hu
{"title":"Optimal Control of Stochastic Markovian Jump Systems With Wiener and Poisson Noises: Two Reinforcement Learning Approaches","authors":"Zhiguo Yan;Tingkun Sun;Guolin Hu","doi":"10.1109/TAI.2024.3471729","DOIUrl":null,"url":null,"abstract":"This article investigates the infinite horizon optimal control problem for stochastic Markovian jump systems with Wiener and Poisson noises. First, a new policy iteration algorithm is designed by using integral reinforcement learning approach and subsystems transformation technique, which obtains the optimal solution without solving stochastic coupled algebraic Riccati equation (SCARE) directly. Second, through the transformation and substitution of the SCARE and feedback gain matrix, a policy iteration algorithm is devised to determine the optimal control strategy. This algorithm leverages only state trajectory information to obtain the optimal solution, and is updated in an unfixed form. Additionally, the algorithm remains unaffected by variations in Poisson jump intensity. Finally, an numerical example is given to verify the effectiveness and convergence of the proposed algorithms.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 12","pages":"6591-6600"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10704597/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates the infinite horizon optimal control problem for stochastic Markovian jump systems with Wiener and Poisson noises. First, a new policy iteration algorithm is designed by using integral reinforcement learning approach and subsystems transformation technique, which obtains the optimal solution without solving stochastic coupled algebraic Riccati equation (SCARE) directly. Second, through the transformation and substitution of the SCARE and feedback gain matrix, a policy iteration algorithm is devised to determine the optimal control strategy. This algorithm leverages only state trajectory information to obtain the optimal solution, and is updated in an unfixed form. Additionally, the algorithm remains unaffected by variations in Poisson jump intensity. Finally, an numerical example is given to verify the effectiveness and convergence of the proposed algorithms.
具有维纳和泊松噪声的随机马尔可夫跳跃系统的最优控制:两种强化学习方法
研究了具有维纳噪声和泊松噪声的随机马尔可夫跳跃系统的无限视界最优控制问题。首先,利用积分强化学习方法和子系统转换技术设计了一种新的策略迭代算法,该算法无需直接求解随机耦合代数Riccati方程(SCARE),即可得到最优解;其次,通过对SCARE和反馈增益矩阵的变换和替换,设计了策略迭代算法来确定最优控制策略。该算法仅利用状态轨迹信息获取最优解,并以不固定的形式更新。此外,该算法不受泊松跳强度变化的影响。最后通过一个算例验证了所提算法的有效性和收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信