{"title":"Towards Resilient 6G O-RAN: An Energy-Efficient URLLC Resource Allocation Framework","authors":"Rana Muhammad Sohaib;Syed Tariq Shah;Poonam Yadav","doi":"10.1109/OJCOMS.2024.3510273","DOIUrl":null,"url":null,"abstract":"The demands of ultra-reliable low-latency communication (URLLC) in “NextG” cellular networks necessitate innovative approaches for efficient resource utilization. The current literature on 6G O-RAN primarily addresses improved mobile broadband (eMBB) performance or URLLC latency optimization individually, often neglecting the intricate balance required to optimize both simultaneously under practical constraints. This paper addresses this gap by proposing a DRL-based resource allocation framework integrated with meta-learning to manage eMBB and URLLC services adaptively. Our approach efficiently allocates heterogeneous network resources, aiming to maximize energy efficiency (EE) while minimizing URLLC latency, even under varying environmental conditions. We highlight the critical importance of accurately estimating the traffic distribution flow in the multi-connectivity (MC) scenario, as its uncertainty can significantly degrade EE. The proposed framework demonstrates superior adaptability across different path loss models, outperforming traditional methods and paving the way for more resilient and efficient 6G networks.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"7701-7714"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10772596","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10772596/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The demands of ultra-reliable low-latency communication (URLLC) in “NextG” cellular networks necessitate innovative approaches for efficient resource utilization. The current literature on 6G O-RAN primarily addresses improved mobile broadband (eMBB) performance or URLLC latency optimization individually, often neglecting the intricate balance required to optimize both simultaneously under practical constraints. This paper addresses this gap by proposing a DRL-based resource allocation framework integrated with meta-learning to manage eMBB and URLLC services adaptively. Our approach efficiently allocates heterogeneous network resources, aiming to maximize energy efficiency (EE) while minimizing URLLC latency, even under varying environmental conditions. We highlight the critical importance of accurately estimating the traffic distribution flow in the multi-connectivity (MC) scenario, as its uncertainty can significantly degrade EE. The proposed framework demonstrates superior adaptability across different path loss models, outperforming traditional methods and paving the way for more resilient and efficient 6G networks.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.