Carlos H. Aldana;Koichiro Takamizawa;Shruthi Soora;Connor Kennedy;Morteza Mehrnoush;Jameelia Cook-Ramirez;Chunyu Hu;Andreas F. Molisch
{"title":"Body Area Network Channel Measurement and Modeling for Extended-Reality Applications","authors":"Carlos H. Aldana;Koichiro Takamizawa;Shruthi Soora;Connor Kennedy;Morteza Mehrnoush;Jameelia Cook-Ramirez;Chunyu Hu;Andreas F. Molisch","doi":"10.1109/OJCOMS.2024.3508717","DOIUrl":null,"url":null,"abstract":"Extended reality (XR) headsets often need to communicate with devices mounted on the body, which could be sensors or computation devices, creating a body area network (BAN). To design reliable communication systems for these purposes, an accurate model for the propagation channel in such a head-centric BAN needs to be established. This paper presents a set of measurements of ultrawideband (UWB) channels of such a BAN when the user is in an indoor office environment. Based on this, we derive a novel model for link gain as a function of the location of the device on the body. This model distinguishes the power received via (i) on-body propagation, (ii) reflections from close-by objects, and (iii) reflections from other parts of the environment. For the on-body and near-by object reflections, we further introduce a new model for the link gain that depends on both the Euclidean distance and the azimuthal positions of the RX antenna elements on the circumference of the body. The measurements and derived models are first motivated by measurements on an RF phantom. Measurements on four human users covering all combinations of male/female and low/high body mass index are then used to parameterize this model.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"7715-7729"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10771835","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10771835/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Extended reality (XR) headsets often need to communicate with devices mounted on the body, which could be sensors or computation devices, creating a body area network (BAN). To design reliable communication systems for these purposes, an accurate model for the propagation channel in such a head-centric BAN needs to be established. This paper presents a set of measurements of ultrawideband (UWB) channels of such a BAN when the user is in an indoor office environment. Based on this, we derive a novel model for link gain as a function of the location of the device on the body. This model distinguishes the power received via (i) on-body propagation, (ii) reflections from close-by objects, and (iii) reflections from other parts of the environment. For the on-body and near-by object reflections, we further introduce a new model for the link gain that depends on both the Euclidean distance and the azimuthal positions of the RX antenna elements on the circumference of the body. The measurements and derived models are first motivated by measurements on an RF phantom. Measurements on four human users covering all combinations of male/female and low/high body mass index are then used to parameterize this model.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.