Active hydrogen tuning by copper–cobalt bimetal catalysts for boosting ammonia electrosynthesis from simulated wastewater†

IF 9.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Green Chemistry Pub Date : 2024-11-07 DOI:10.1039/D4GC04120H
Chunqi Yang, Chang Liu, Jingwen Zhuang, Ziyan Yang, Aiping Chen, Yuhang Li and Chunzhong Li
{"title":"Active hydrogen tuning by copper–cobalt bimetal catalysts for boosting ammonia electrosynthesis from simulated wastewater†","authors":"Chunqi Yang, Chang Liu, Jingwen Zhuang, Ziyan Yang, Aiping Chen, Yuhang Li and Chunzhong Li","doi":"10.1039/D4GC04120H","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical nitrate reduction reaction (NO<small><sub>3</sub></small>RR) represents a promising approach to balance the nitrogen cycle, converting environmental pollutant NO<small><sub>3</sub></small><small><sup>−</sup></small> to valuable ammonia (NH<small><sub>3</sub></small>). However, the whole reaction involves complex proton-coupled electron transfer processes, requiring the development of efficient catalysts. Owing to unique d-orbitals, Cu-based catalysts exhibit excellent performance. Here, we design a Cu<small><sub>5</sub></small>–Co<small><sub>5</sub></small> bimetal nanocomposite that achieves a high FE<small><sub>NH<small><sub>3</sub></small></sub></small> of 94.1%, a yield rate of 14.8 mg h<small><sup>−1</sup></small> cm<small><sup>−2</sup></small> and great stability over twenty hours. The yield rate can be enhanced in a flow cell and reach 30.9 mg h<small><sup>−1</sup></small> cm<small><sup>−2</sup></small>. We test the performance of the Cu<small><sub>5</sub></small>–Co<small><sub>5</sub></small> catalyst for simulated wastewater treatment, exhibiting a yield rate of 6.7 mg h<small><sup>−1</sup></small> cm<small><sup>−2</sup></small> at −100 mA cm<small><sup>−2</sup></small>. Furthermore, <em>in situ</em> ATR-SEIRAS and Raman spectra reveal the reaction pathway on the Cu<small><sub>5</sub></small>–Co<small><sub>5</sub></small> catalyst. The Cu can adsorb NO<small><sub>3</sub></small><small><sup>−</sup></small> and convert to *NO<small><sub>2</sub></small><small><sup>−</sup></small>, while Co(OH)<small><sub>2</sub></small> derived from metallic Co can promote water spillover and facilitate the subsequent *NO<small><sub>2</sub></small><small><sup>−</sup></small>-to-NH<small><sub>3</sub></small> conversion.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 1","pages":" 209-217"},"PeriodicalIF":9.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d4gc04120h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical nitrate reduction reaction (NO3RR) represents a promising approach to balance the nitrogen cycle, converting environmental pollutant NO3 to valuable ammonia (NH3). However, the whole reaction involves complex proton-coupled electron transfer processes, requiring the development of efficient catalysts. Owing to unique d-orbitals, Cu-based catalysts exhibit excellent performance. Here, we design a Cu5–Co5 bimetal nanocomposite that achieves a high FENH3 of 94.1%, a yield rate of 14.8 mg h−1 cm−2 and great stability over twenty hours. The yield rate can be enhanced in a flow cell and reach 30.9 mg h−1 cm−2. We test the performance of the Cu5–Co5 catalyst for simulated wastewater treatment, exhibiting a yield rate of 6.7 mg h−1 cm−2 at −100 mA cm−2. Furthermore, in situ ATR-SEIRAS and Raman spectra reveal the reaction pathway on the Cu5–Co5 catalyst. The Cu can adsorb NO3 and convert to *NO2, while Co(OH)2 derived from metallic Co can promote water spillover and facilitate the subsequent *NO2-to-NH3 conversion.

Abstract Image

利用铜钴双金属催化剂调节活性氢,促进模拟废水的氨电合成†。
电化学硝酸盐还原反应(NO3RR)是平衡氮循环的一种有前途的方法,可将环境污染物 NO3- 转化为有价值的氨(NH3)。然而,整个反应涉及复杂的质子耦合电子传递过程,需要开发高效的催化剂。由于独特的 d 轨道,铜基催化剂表现出卓越的性能。在这里,我们设计了一种 Cu5-Co5 双金属纳米复合材料,它的 FENH3 高达 94.1%,产率为 14.8 mg h-1 cm-2,并且在二十小时内非常稳定。在流动池中,产率可提高到 30.9 毫克/小时-1 厘米-2。我们测试了 Cu5-Co5 催化剂在模拟废水处理中的性能,在 -100 mA cm-2 的条件下,产率为 6.7 mg h-1 cm-2。此外,原位 ATR-SEIRAS 和拉曼光谱揭示了 Cu5-Co5 催化剂的反应途径。Cu 可吸附 NO3- 并转化为 *NO2-,而金属 Co 衍生的 Co(OH)2 可促进水溢出并促进随后的 *NO2- 到 NH3 的转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信