Shaowei Wu, Lu Li, Lei Song, Guannan Zhou, Lixin Liu, Hailan Kang, Guangyuan Zhou and Rui Wang
{"title":"A simple, efficient and selective catalyst for closed-loop recycling of PEF in situ towards a circular materials economy approach†","authors":"Shaowei Wu, Lu Li, Lei Song, Guannan Zhou, Lixin Liu, Hailan Kang, Guangyuan Zhou and Rui Wang","doi":"10.1039/D4GC03803G","DOIUrl":null,"url":null,"abstract":"<p >Developing plastics from biomass and performing chemical recycling are two essential strategies in circular materials economy. Herein, we present an innovative technique for the closed-loop, <em>in situ</em> chemical recycling of bio-derived poly(ethylene 2,5-furandicarboxylate) (PEF), utilizing the exceptional capabilities of monodisperse nano γ-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small> with tunable oxygen vacancy density. This framework enables seamless cycling of bio-based plastics from polymerization to de-polymerization and re-polymerization, promoting a sustainable polymer economy. The introduction of oxygen vacancy defects in the structure of gallium oxide, a low toxicity and transparent metal oxide, is considered to be an effective strategy for improving catalytic activity. The polymerization process was controlled by using novel oxygen vacancy-defective Ga<small><sub>2</sub></small>O<small><sub>3</sub></small>, which catalyzed the reaction between bio-based 2,5-furandicarboxylic acid and ethylene glycol to produce high molecular weight PEF. (<em>M</em><small><sub>n</sub></small> = 41 kg mol<small><sup>−1</sup></small>). This PEF can then undergo efficient <em>in situ</em> glycolysis, achieving complete de-polymerization under moderate conditions without the need for external catalysts. The glycolysis derivatives of PEF can be directly re-polymerized to polyester rPEF, achieving a significant molecular weight (<em>M</em><small><sub>n</sub></small> = 43 kg mol<small><sup>−1</sup></small>) and a remarkable yield (93%). Notably, γ-Ga<small><sub>2</sub></small>O<small><sub>3</sub></small> with nano oxygen vacancy defects exhibits the ability to selectively de-polymerize PEF within composite material systems containing commercial PET. This research highlights the significant utility of a green catalyst in <em>in situ</em> closed-loop recycling processes.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 1","pages":" 179-189"},"PeriodicalIF":9.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d4gc03803g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing plastics from biomass and performing chemical recycling are two essential strategies in circular materials economy. Herein, we present an innovative technique for the closed-loop, in situ chemical recycling of bio-derived poly(ethylene 2,5-furandicarboxylate) (PEF), utilizing the exceptional capabilities of monodisperse nano γ-Ga2O3 with tunable oxygen vacancy density. This framework enables seamless cycling of bio-based plastics from polymerization to de-polymerization and re-polymerization, promoting a sustainable polymer economy. The introduction of oxygen vacancy defects in the structure of gallium oxide, a low toxicity and transparent metal oxide, is considered to be an effective strategy for improving catalytic activity. The polymerization process was controlled by using novel oxygen vacancy-defective Ga2O3, which catalyzed the reaction between bio-based 2,5-furandicarboxylic acid and ethylene glycol to produce high molecular weight PEF. (Mn = 41 kg mol−1). This PEF can then undergo efficient in situ glycolysis, achieving complete de-polymerization under moderate conditions without the need for external catalysts. The glycolysis derivatives of PEF can be directly re-polymerized to polyester rPEF, achieving a significant molecular weight (Mn = 43 kg mol−1) and a remarkable yield (93%). Notably, γ-Ga2O3 with nano oxygen vacancy defects exhibits the ability to selectively de-polymerize PEF within composite material systems containing commercial PET. This research highlights the significant utility of a green catalyst in in situ closed-loop recycling processes.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.