Highly durable alkaline water electrolyzer with branched poly(oxindole biphenylene) ion-solvating membrane

IF 11.5 Q1 CHEMISTRY, PHYSICAL
Min Liu, Ruofei Gao, Kang Geng, Yingda Huang, Xiaowei Zhou, Jin Yao, Bin Hu, Hongjing Li, Boxin Xue, Nanwen Li
{"title":"Highly durable alkaline water electrolyzer with branched poly(oxindole biphenylene) ion-solvating membrane","authors":"Min Liu, Ruofei Gao, Kang Geng, Yingda Huang, Xiaowei Zhou, Jin Yao, Bin Hu, Hongjing Li, Boxin Xue, Nanwen Li","doi":"10.1016/j.checat.2024.101199","DOIUrl":null,"url":null,"abstract":"Ion-solvating membranes (ISMs) offer a novel approach for high-rate alkaline water electrolyzers (AWEs), but device durability remains a major challenge for their practical application. Herein, we first found that the oxidation stability of ISMs in electrolyzers showed a significant effect on their long-term device durability, in addition to the alkaline stability. More importantly, both the operating temperature and the voltage have been observed as crucial factors affecting the oxidative stability of ISMs. While maintaining other excellent properties, the branching polymer chain in ISMs could further enhance their oxidative stability. As a result, a highly durable AWE with branched poly(oxindole biphenylene) (POBP) ISMs operated stably for over 15,000 h at 2.26 V and 60°C, representing the longest reported lifetime for ISM-based AWEs to date. These results provide significant guidance on how to reasonably design the polymer backbone and adjust the operating conditions to prolong the membrane’s lifetime in AWEs for practical applications.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"18 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ion-solvating membranes (ISMs) offer a novel approach for high-rate alkaline water electrolyzers (AWEs), but device durability remains a major challenge for their practical application. Herein, we first found that the oxidation stability of ISMs in electrolyzers showed a significant effect on their long-term device durability, in addition to the alkaline stability. More importantly, both the operating temperature and the voltage have been observed as crucial factors affecting the oxidative stability of ISMs. While maintaining other excellent properties, the branching polymer chain in ISMs could further enhance their oxidative stability. As a result, a highly durable AWE with branched poly(oxindole biphenylene) (POBP) ISMs operated stably for over 15,000 h at 2.26 V and 60°C, representing the longest reported lifetime for ISM-based AWEs to date. These results provide significant guidance on how to reasonably design the polymer backbone and adjust the operating conditions to prolong the membrane’s lifetime in AWEs for practical applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信