Min Liu, Ruofei Gao, Kang Geng, Yingda Huang, Xiaowei Zhou, Jin Yao, Bin Hu, Hongjing Li, Boxin Xue, Nanwen Li
{"title":"Highly durable alkaline water electrolyzer with branched poly(oxindole biphenylene) ion-solvating membrane","authors":"Min Liu, Ruofei Gao, Kang Geng, Yingda Huang, Xiaowei Zhou, Jin Yao, Bin Hu, Hongjing Li, Boxin Xue, Nanwen Li","doi":"10.1016/j.checat.2024.101199","DOIUrl":null,"url":null,"abstract":"Ion-solvating membranes (ISMs) offer a novel approach for high-rate alkaline water electrolyzers (AWEs), but device durability remains a major challenge for their practical application. Herein, we first found that the oxidation stability of ISMs in electrolyzers showed a significant effect on their long-term device durability, in addition to the alkaline stability. More importantly, both the operating temperature and the voltage have been observed as crucial factors affecting the oxidative stability of ISMs. While maintaining other excellent properties, the branching polymer chain in ISMs could further enhance their oxidative stability. As a result, a highly durable AWE with branched poly(oxindole biphenylene) (POBP) ISMs operated stably for over 15,000 h at 2.26 V and 60°C, representing the longest reported lifetime for ISM-based AWEs to date. These results provide significant guidance on how to reasonably design the polymer backbone and adjust the operating conditions to prolong the membrane’s lifetime in AWEs for practical applications.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"18 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ion-solvating membranes (ISMs) offer a novel approach for high-rate alkaline water electrolyzers (AWEs), but device durability remains a major challenge for their practical application. Herein, we first found that the oxidation stability of ISMs in electrolyzers showed a significant effect on their long-term device durability, in addition to the alkaline stability. More importantly, both the operating temperature and the voltage have been observed as crucial factors affecting the oxidative stability of ISMs. While maintaining other excellent properties, the branching polymer chain in ISMs could further enhance their oxidative stability. As a result, a highly durable AWE with branched poly(oxindole biphenylene) (POBP) ISMs operated stably for over 15,000 h at 2.26 V and 60°C, representing the longest reported lifetime for ISM-based AWEs to date. These results provide significant guidance on how to reasonably design the polymer backbone and adjust the operating conditions to prolong the membrane’s lifetime in AWEs for practical applications.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.