Hydrogen-bond catalysis in biomass valorization

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2024-12-16 DOI:10.1016/j.chempr.2024.11.002
Yingchuan Zhang, George W. Huber, Zhengxiao Guo
{"title":"Hydrogen-bond catalysis in biomass valorization","authors":"Yingchuan Zhang, George W. Huber, Zhengxiao Guo","doi":"10.1016/j.chempr.2024.11.002","DOIUrl":null,"url":null,"abstract":"As a biomimetic concept of enzymatic catalysis, hydrogen-bond catalysis (HBC) leverages H-bond-inducing atomic sites or functional groups in catalysts to regulate substrate binding and transition states so as to enable highly efficient and (stereo)selective organic reactions. However, it has rarely been employed in catalytic biomass valorization toward renewable fuels and value-added chemicals until recently. This perspective aims to highlight the opportunities offered by HBC to promote effective transformations of biomass-derived oxygenates. The concept and characterization approaches of HBC strategies are first introduced, followed by a critical overview of HBC-involved reactions, catalyst structures, and dynamic interfaces between biomass substrates and catalysts. Particular attention is paid to binding configurations and adsorption energetics for which engineered H-bonds can tune bond cleavage/formation and promote desirable reaction pathways in association with intrinsic catalytic sites (e.g., Lewis/Brønsted acid sites, metal active sites, and photogenerated charges) and therefore enable biomass valorization in more efficient and sustainable manners.","PeriodicalId":268,"journal":{"name":"Chem","volume":"106 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.11.002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As a biomimetic concept of enzymatic catalysis, hydrogen-bond catalysis (HBC) leverages H-bond-inducing atomic sites or functional groups in catalysts to regulate substrate binding and transition states so as to enable highly efficient and (stereo)selective organic reactions. However, it has rarely been employed in catalytic biomass valorization toward renewable fuels and value-added chemicals until recently. This perspective aims to highlight the opportunities offered by HBC to promote effective transformations of biomass-derived oxygenates. The concept and characterization approaches of HBC strategies are first introduced, followed by a critical overview of HBC-involved reactions, catalyst structures, and dynamic interfaces between biomass substrates and catalysts. Particular attention is paid to binding configurations and adsorption energetics for which engineered H-bonds can tune bond cleavage/formation and promote desirable reaction pathways in association with intrinsic catalytic sites (e.g., Lewis/Brønsted acid sites, metal active sites, and photogenerated charges) and therefore enable biomass valorization in more efficient and sustainable manners.

Abstract Image

生物质增值中的氢键催化
氢键催化(HBC)是酶催化的一种仿生概念,利用催化剂中诱导氢键的原子位点或官能团调节底物结合和过渡状态,从而实现高效(立体)选择性有机反应。然而,直到最近,它很少被用于可再生燃料和增值化学品的催化生物质增值。这一观点旨在强调HBC提供的机会,以促进生物质衍生氧合物的有效转化。首先介绍了HBC策略的概念和表征方法,然后概述了HBC相关的反应、催化剂结构以及生物质基质和催化剂之间的动态界面。特别关注结合构型和吸附能量学,其中工程氢键可以调节键的切割/形成,并促进与内在催化位点(例如Lewis/Brønsted酸位点、金属活性位点和光生电荷)相关的理想反应途径,从而使生物质以更有效和可持续的方式增值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信