Thermodynamic roles of quantum environments: from heat baths to work reservoirs

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Alessandra Colla and Heinz-Peter Breuer
{"title":"Thermodynamic roles of quantum environments: from heat baths to work reservoirs","authors":"Alessandra Colla and Heinz-Peter Breuer","doi":"10.1088/2058-9565/ad98be","DOIUrl":null,"url":null,"abstract":"Environments in quantum thermodynamics usually take the role of heat baths. These baths are Markovian, weakly coupled to the system, and initialized in a thermal state. Whenever one of these properties is missing, standard quantum thermodynamics is no longer suitable to treat the thermodynamic properties of the system that result from the interaction with the environment. Using a recently proposed framework for open system quantum thermodynamics which is valid for arbitrary couplings and non-Markovian effects, we show that within the very same model, described by a Fano–Anderson Hamiltonian, the environment can take three different thermodynamic roles: a standard heat bath, exchanging only heat with the system, a work reservoir, exchanging only work, and a hybrid environment, providing both types of energy exchange. The exact role of the environment is determined by the strength and structure of the coupling, and by its initial state. The latter also dictates the long time behaviour of the open system, leading to thermal equilibrium for an initial thermal state and to a nonequilibrium steady state when there are displaced environmental modes.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"16 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad98be","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Environments in quantum thermodynamics usually take the role of heat baths. These baths are Markovian, weakly coupled to the system, and initialized in a thermal state. Whenever one of these properties is missing, standard quantum thermodynamics is no longer suitable to treat the thermodynamic properties of the system that result from the interaction with the environment. Using a recently proposed framework for open system quantum thermodynamics which is valid for arbitrary couplings and non-Markovian effects, we show that within the very same model, described by a Fano–Anderson Hamiltonian, the environment can take three different thermodynamic roles: a standard heat bath, exchanging only heat with the system, a work reservoir, exchanging only work, and a hybrid environment, providing both types of energy exchange. The exact role of the environment is determined by the strength and structure of the coupling, and by its initial state. The latter also dictates the long time behaviour of the open system, leading to thermal equilibrium for an initial thermal state and to a nonequilibrium steady state when there are displaced environmental modes.
量子环境的热力学作用:从热浴到功库
量子热力学中的环境通常扮演热浴的角色。这些热浴是马尔可夫的,与系统弱耦合,并以热态初始化。只要缺少其中一个属性,标准量子热力学就不再适合处理与环境相互作用所产生的系统热力学属性。最近提出的开放系统量子热力学框架适用于任意耦合和非马尔可夫效应,我们利用这一框架证明,在由法诺-安德森哈密顿描述的同一模型中,环境可以扮演三种不同的热力学角色:标准热浴(只与系统交换热)、功库(只交换功)和混合环境(提供两种类型的能量交换)。环境的确切作用取决于耦合的强度和结构,以及耦合的初始状态。后者也决定了开放系统的长期行为,在初始热状态下会导致热平衡,而在环境模式发生位移时会导致非平衡稳定状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信