Contrasting effects of crop straw and green manure amendments on soil gross N transformations in a soil-maize system: a short-term 15N incubation case study
Xingling Wang, Minghua Zhou, Bo Zhu, Jinbo Zhang, Christoph Müller, Ralf Kiese, Klaus Butterbach-Bahl
{"title":"Contrasting effects of crop straw and green manure amendments on soil gross N transformations in a soil-maize system: a short-term 15N incubation case study","authors":"Xingling Wang, Minghua Zhou, Bo Zhu, Jinbo Zhang, Christoph Müller, Ralf Kiese, Klaus Butterbach-Bahl","doi":"10.1007/s11104-024-07149-w","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Organic amendments directly affect soil N transformations, while the direction and magnitude of these effects remain uncertain. Most previous studies through laboratory incubation experiments without plants likely neglected the feedback interactions of plant, thereby limiting the applicability in field conditions. This study aims to explore the effects of organic amendments on soil gross N transformations with consideration of plant feedback.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The <sup>15</sup>N tracing pot experiments were performed using a soil-maize system with two types of organic amendments—crop straw (wheat straw, CS) and green manure (Chinese milk vetch, GM) to determine soil gross N transformation processes and rates by using the <i>Ntrace</i><sub><i>plant</i></sub> model.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Green manure amendments significantly increased soil gross N mineralization and nitrification rates compared to crop straw treatment and the control. In contrast, crop straw incorporation did not enhance gross N mineralization rates and even significantly decreased soil gross nitrification rates relative to the control. Both green manure and crop straw amendments significantly increased soil microbial ammonium (NH<sub>4</sub><sup>+</sup>) immobilization rates compared to the control. However, green manure amendments significantly enhanced soil microbial nitrate (NO<sub>3</sub><sup>−</sup>) immobilization rates only in the presence of maize, with no significant effect observed in the absence of maize. Meanwhile, crop straw incorporation significantly decreased soil microbial NO<sub>3</sub><sup>−</sup> immobilization rates.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Our findings indicate that green manure and crop straw amendments have contrasting effects on soil gross N transformations, with green manure demonstrating a more pronounced positive impacts, particularly in the presence of plants.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"50 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07149-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims
Organic amendments directly affect soil N transformations, while the direction and magnitude of these effects remain uncertain. Most previous studies through laboratory incubation experiments without plants likely neglected the feedback interactions of plant, thereby limiting the applicability in field conditions. This study aims to explore the effects of organic amendments on soil gross N transformations with consideration of plant feedback.
Methods
The 15N tracing pot experiments were performed using a soil-maize system with two types of organic amendments—crop straw (wheat straw, CS) and green manure (Chinese milk vetch, GM) to determine soil gross N transformation processes and rates by using the Ntraceplant model.
Results
Green manure amendments significantly increased soil gross N mineralization and nitrification rates compared to crop straw treatment and the control. In contrast, crop straw incorporation did not enhance gross N mineralization rates and even significantly decreased soil gross nitrification rates relative to the control. Both green manure and crop straw amendments significantly increased soil microbial ammonium (NH4+) immobilization rates compared to the control. However, green manure amendments significantly enhanced soil microbial nitrate (NO3−) immobilization rates only in the presence of maize, with no significant effect observed in the absence of maize. Meanwhile, crop straw incorporation significantly decreased soil microbial NO3− immobilization rates.
Conclusion
Our findings indicate that green manure and crop straw amendments have contrasting effects on soil gross N transformations, with green manure demonstrating a more pronounced positive impacts, particularly in the presence of plants.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.