Model specification for volatility forecasting benchmark

IF 7.5 1区 经济学 Q1 BUSINESS, FINANCE
Yaojie Zhang, Mengxi He, Yudong Wang, Danyan Wen
{"title":"Model specification for volatility forecasting benchmark","authors":"Yaojie Zhang, Mengxi He, Yudong Wang, Danyan Wen","doi":"10.1016/j.irfa.2024.103850","DOIUrl":null,"url":null,"abstract":"The ideal model specification for asset price volatility forecasting is still an open question. From a variable transformation perspective, existing studies arbitrarily choose between the raw volatility measure, its square root form, or its natural logarithmic form. In this paper, both the in- and out-of-sample forecasting results support the effectiveness of variable transformation compared to the raw volatility variable. Notably, the logarithmic transformation shows overwhelming advantages. Our results hold across thirty global stock indices, five cryptocurrencies, a crude oil market, as well as a wide range of extensions and robustness checks. In statistics, we find the predictability sources that the logarithmic transformation can lead to more efficient regression estimators by mitigating the heteroscedasticity and serial correlation issues. Consequently, let's make a deal: the benchmark model of volatility forecasting should be based on the natural logarithmic form of the original volatility measure.","PeriodicalId":48226,"journal":{"name":"International Review of Financial Analysis","volume":"30 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Financial Analysis","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1016/j.irfa.2024.103850","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

The ideal model specification for asset price volatility forecasting is still an open question. From a variable transformation perspective, existing studies arbitrarily choose between the raw volatility measure, its square root form, or its natural logarithmic form. In this paper, both the in- and out-of-sample forecasting results support the effectiveness of variable transformation compared to the raw volatility variable. Notably, the logarithmic transformation shows overwhelming advantages. Our results hold across thirty global stock indices, five cryptocurrencies, a crude oil market, as well as a wide range of extensions and robustness checks. In statistics, we find the predictability sources that the logarithmic transformation can lead to more efficient regression estimators by mitigating the heteroscedasticity and serial correlation issues. Consequently, let's make a deal: the benchmark model of volatility forecasting should be based on the natural logarithmic form of the original volatility measure.
波动率预测基准的模型规格
资产价格波动率预测的理想模型规格仍是一个未决问题。从变量转换的角度来看,现有研究在原始波动率、其平方根形式或其自然对数形式之间任意 选择。在本文中,样本内和样本外的预测结果都支持变量转换比原始波动率变量更有效。值得注意的是,对数变换显示出压倒性的优势。我们的结果在三十种全球股票指数、五种加密货币、一个原油市场以及广泛的扩展和稳健性检查中都是成立的。在统计中,我们发现了可预测性的来源,即对数变换可以缓解异方差和序列相关问题,从而带来更有效的回归估计。因此,我们来做个约定:波动率预测的基准模型应基于原始波动率度量的自然对数形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.80%
发文量
366
期刊介绍: The International Review of Financial Analysis (IRFA) is an impartial refereed journal designed to serve as a platform for high-quality financial research. It welcomes a diverse range of financial research topics and maintains an unbiased selection process. While not limited to U.S.-centric subjects, IRFA, as its title suggests, is open to valuable research contributions from around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信