Climate Covariate Choice and Uncertainty in Projecting Species Range Shifts: A Case Study in the Eastern Bering Sea

IF 5.6 1区 农林科学 Q1 FISHERIES
Maurice C. Goodman, Jonathan C. P. Reum, Cheryl L. Barnes, Andre E. Punt, James N. Ianelli, Elizabeth A. McHuron, Giulio A. De Leo, Kirstin K. Holsman
{"title":"Climate Covariate Choice and Uncertainty in Projecting Species Range Shifts: A Case Study in the Eastern Bering Sea","authors":"Maurice C. Goodman, Jonathan C. P. Reum, Cheryl L. Barnes, Andre E. Punt, James N. Ianelli, Elizabeth A. McHuron, Giulio A. De Leo, Kirstin K. Holsman","doi":"10.1111/faf.12875","DOIUrl":null,"url":null,"abstract":"Species distribution models (SDMs) are critical to the adaptive management of fisheries under climate change. While many approaches projecting marine species range shifts have incorporated the effects of temperature on movement, there is a need to incorporate a wider suite of ecologically relevant predictors as temperature‐based SDMs can considerably under‐ or over‐estimate the rate of species responses to climate shocks. As a subarctic ecosystem at the sea ice margin, the Eastern Bering Sea (EBS) is warming faster than much of the global ocean, resulting in the rapid redistribution of key fishery and subsistence resources. To support long‐term planning and adaptation, we combine 40 years of scientific surveys with a high‐resolution oceanographic model to examine the effects of bottom temperature, oxygen, pH and a regional climate index (the extent of the EBS ‘cold pool’) on range projections through the end of the century. We use multimodel inference to partition uncertainty among earth systems models, climate scenarios and distribution model parameterizations for several ecologically and economically important EBS groundfish and crabs. Covariate choice is the primary source of uncertainty for most species, with models that account for spatial responses to the cold pool performing better and suggesting more extensive northward movements than alternative models. Models suggest declines in the probability of occurrence at low pH and oxygen concentrations for most species. We project shifts that are directionally consistent with, yet larger than those previously estimated for most species, suggesting that accounting for large‐scale climate variability in species distribution models may substantially alter range projections.","PeriodicalId":169,"journal":{"name":"Fish and Fisheries","volume":"38 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish and Fisheries","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/faf.12875","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Species distribution models (SDMs) are critical to the adaptive management of fisheries under climate change. While many approaches projecting marine species range shifts have incorporated the effects of temperature on movement, there is a need to incorporate a wider suite of ecologically relevant predictors as temperature‐based SDMs can considerably under‐ or over‐estimate the rate of species responses to climate shocks. As a subarctic ecosystem at the sea ice margin, the Eastern Bering Sea (EBS) is warming faster than much of the global ocean, resulting in the rapid redistribution of key fishery and subsistence resources. To support long‐term planning and adaptation, we combine 40 years of scientific surveys with a high‐resolution oceanographic model to examine the effects of bottom temperature, oxygen, pH and a regional climate index (the extent of the EBS ‘cold pool’) on range projections through the end of the century. We use multimodel inference to partition uncertainty among earth systems models, climate scenarios and distribution model parameterizations for several ecologically and economically important EBS groundfish and crabs. Covariate choice is the primary source of uncertainty for most species, with models that account for spatial responses to the cold pool performing better and suggesting more extensive northward movements than alternative models. Models suggest declines in the probability of occurrence at low pH and oxygen concentrations for most species. We project shifts that are directionally consistent with, yet larger than those previously estimated for most species, suggesting that accounting for large‐scale climate variability in species distribution models may substantially alter range projections.
预测物种分布范围变化时的气候变量选择和不确定性:东白令海案例研究
物种分布模型(SDM)对气候变化下的渔业适应性管理至关重要。尽管许多预测海洋物种分布范围变化的方法都纳入了温度对物种移动的影响,但仍有必要纳入更广泛的生态相关预测因子,因为基于温度的物种分布模型会大大低估或高估物种对气候冲击的反应速度。作为海冰边缘的亚北极生态系统,东白令海(EBS)的变暖速度快于全球大部分海洋,导致主要渔业和生存资源迅速重新分配。为了支持长期规划和适应,我们将 40 年的科学调查与高分辨率海洋学模型相结合,研究了底层温度、氧气、pH 值和区域气候指数(东白令海 "冷池 "范围)对本世纪末范围预测的影响。我们使用多模型推断法来划分地球系统模型、气候情景和分布模型参数之间的不确定性,以确定几种生态和经济上重要的 EBS 底层鱼类和螃蟹。对大多数物种来说,协变量选择是不确定性的主要来源,考虑到对冷池的空间响应的模型比其他模型表现得更好,并表明向北移动的范围更广。模型表明,大多数物种在低 pH 值和低氧浓度下出现的概率会下降。我们预测大多数物种的变化方向与以前估计的一致,但比以前估计的更大,这表明在物种分布模型中考虑大规模气候变异性可能会大大改变预测的分布范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fish and Fisheries
Fish and Fisheries 农林科学-渔业
CiteScore
12.80
自引率
6.00%
发文量
83
期刊介绍: Fish and Fisheries adopts a broad, interdisciplinary approach to the subject of fish biology and fisheries. It draws contributions in the form of major synoptic papers and syntheses or meta-analyses that lay out new approaches, re-examine existing findings, methods or theory, and discuss papers and commentaries from diverse areas. Focal areas include fish palaeontology, molecular biology and ecology, genetics, biochemistry, physiology, ecology, behaviour, evolutionary studies, conservation, assessment, population dynamics, mathematical modelling, ecosystem analysis and the social, economic and policy aspects of fisheries where they are grounded in a scientific approach. A paper in Fish and Fisheries must draw upon all key elements of the existing literature on a topic, normally have a broad geographic and/or taxonomic scope, and provide general points which make it compelling to a wide range of readers whatever their geographical location. So, in short, we aim to publish articles that make syntheses of old or synoptic, long-term or spatially widespread data, introduce or consolidate fresh concepts or theory, or, in the Ghoti section, briefly justify preliminary, new synoptic ideas. Please note that authors of submissions not meeting this mandate will be directed to the appropriate primary literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信