Cui Gan, Zhaobo Luo, Chengyuan Su, Caixi Hu, Lei Tong, Jianbo Shi
{"title":"Temperature-dependent co-transport behavior of goethite, Fe2+, and antibiotic in the hyporheic zone","authors":"Cui Gan, Zhaobo Luo, Chengyuan Su, Caixi Hu, Lei Tong, Jianbo Shi","doi":"10.1016/j.jhydrol.2024.132487","DOIUrl":null,"url":null,"abstract":"The hyporheic zone is a crucial ecohydrological interface that plays a substantial role in the biogeochemical activity of iron and its mediated pollutant conversion. It is significantly influenced by dissolved oxygen and temperature fluctuations, but the combined effects and mechanisms are unknown. In this study, the co-transport behavior of goethite colloid (Goe), aqueous Fe<ce:sup loc=\"post\">2+</ce:sup> and oxytetracycline (OTC) in groundwater discharge was simulated by column experiments. Our findings reveal that compared with room temperature (25 °C), the penetration rates of these compounds were generally promoted (0.1–7.0 % Goe, 14.1–43.1 % Fe<ce:sup loc=\"post\">2+</ce:sup>, 0–19.6 % OTC) at low temperature (10 °C) but inhibited (0–5.0 % Goe, 0–51.0 % Fe<ce:sup loc=\"post\">2+</ce:sup>, 0–3.8 % OTC) at high temperature (35 °C). At room temperature (25 °C), only 5 % of the Goe can penetrate the triadic transport system, where the Fe-OTC complex decreased the Zeta potential of Goe, hence improving its transport capacity. Compared with the penetration of individual Fe<ce:sup loc=\"post\">2+</ce:sup>, the Fe<ce:sup loc=\"post\">2+</ce:sup> transport was increased by 13.2 % due to the promoting effect of OTC on Fe redox cycling, whereas the electron transfer effect between Goe and Fe<ce:sup loc=\"post\">2+</ce:sup> inhibited the transport by 46.6 %. The impact of μg/L OTC on the migration of Fe and Goe was dramatically diminished compared to the mg/L level. OTC was eliminated mainly by complex internal oxidation with Fe, weak adsorption, chemisorption, and hydroxyl degradation effects, but these were diminished at low temperatures while intensified at high temperatures. This study provides a deeper understanding of the intricate mechanisms of Fe and antibiotic transport in hyporheic zones, highlighting the significant roles of temperature and chemical interactions, particularly during seasonal changes.","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"39 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2024.132487","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The hyporheic zone is a crucial ecohydrological interface that plays a substantial role in the biogeochemical activity of iron and its mediated pollutant conversion. It is significantly influenced by dissolved oxygen and temperature fluctuations, but the combined effects and mechanisms are unknown. In this study, the co-transport behavior of goethite colloid (Goe), aqueous Fe2+ and oxytetracycline (OTC) in groundwater discharge was simulated by column experiments. Our findings reveal that compared with room temperature (25 °C), the penetration rates of these compounds were generally promoted (0.1–7.0 % Goe, 14.1–43.1 % Fe2+, 0–19.6 % OTC) at low temperature (10 °C) but inhibited (0–5.0 % Goe, 0–51.0 % Fe2+, 0–3.8 % OTC) at high temperature (35 °C). At room temperature (25 °C), only 5 % of the Goe can penetrate the triadic transport system, where the Fe-OTC complex decreased the Zeta potential of Goe, hence improving its transport capacity. Compared with the penetration of individual Fe2+, the Fe2+ transport was increased by 13.2 % due to the promoting effect of OTC on Fe redox cycling, whereas the electron transfer effect between Goe and Fe2+ inhibited the transport by 46.6 %. The impact of μg/L OTC on the migration of Fe and Goe was dramatically diminished compared to the mg/L level. OTC was eliminated mainly by complex internal oxidation with Fe, weak adsorption, chemisorption, and hydroxyl degradation effects, but these were diminished at low temperatures while intensified at high temperatures. This study provides a deeper understanding of the intricate mechanisms of Fe and antibiotic transport in hyporheic zones, highlighting the significant roles of temperature and chemical interactions, particularly during seasonal changes.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.