Integration of SWAT-DPS and optimization algorithm for spatial design of ditch-pond systems in small agricultural catchments

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL
Cheng Sun, Shibo Chen, Qingqing Zuo, Lei Chen, Zhenyao Shen
{"title":"Integration of SWAT-DPS and optimization algorithm for spatial design of ditch-pond systems in small agricultural catchments","authors":"Cheng Sun, Shibo Chen, Qingqing Zuo, Lei Chen, Zhenyao Shen","doi":"10.1016/j.jhydrol.2024.132510","DOIUrl":null,"url":null,"abstract":"Ditches and ponds are widely used in rural landscapes, forming integrated adaptation systems that play a pivotal role in reducing non-point source (NPS) pollution. However, existing semi-distributed models are not capable of accurately simulating pollution removals of ditches and ponds, resulting in a critical gap in integrating simulation, optimization, and spatial configuration for effective pollution control. To address this issue, the newly developed SWAT-DPS model was integrated with multi-objective optimization to construct an integrated framework for optimizing the layouts of ditches and ponds while effectively balancing environmental and economic benefits. This framework enables more accurate grid-scale simulation of pollution reduction of measures, offering more practical layout solutions. Results showed that implementing vegetated ditches, multiple ponds, and vegetation filter strips could reduce NPS pollutants by 20–60 %. Comparative analysis revealed the costs ranging from 0 to 6.28 × 10⁶ yuan, with all cost levels achieving required reductions in total nitrogen (TN) and total phosphorus (TP). Specifically, TN reductions exceeded 60 % in the medium-cost scheme, while TP reductions reached 60 % similarly in the high-cost scheme. This study provides a flexible framework for evaluating the removal efficiencies of NPS pollution, with fully consideration of the spatial configuration of ditch-pond system.","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"63 5 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2024.132510","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Ditches and ponds are widely used in rural landscapes, forming integrated adaptation systems that play a pivotal role in reducing non-point source (NPS) pollution. However, existing semi-distributed models are not capable of accurately simulating pollution removals of ditches and ponds, resulting in a critical gap in integrating simulation, optimization, and spatial configuration for effective pollution control. To address this issue, the newly developed SWAT-DPS model was integrated with multi-objective optimization to construct an integrated framework for optimizing the layouts of ditches and ponds while effectively balancing environmental and economic benefits. This framework enables more accurate grid-scale simulation of pollution reduction of measures, offering more practical layout solutions. Results showed that implementing vegetated ditches, multiple ponds, and vegetation filter strips could reduce NPS pollutants by 20–60 %. Comparative analysis revealed the costs ranging from 0 to 6.28 × 10⁶ yuan, with all cost levels achieving required reductions in total nitrogen (TN) and total phosphorus (TP). Specifically, TN reductions exceeded 60 % in the medium-cost scheme, while TP reductions reached 60 % similarly in the high-cost scheme. This study provides a flexible framework for evaluating the removal efficiencies of NPS pollution, with fully consideration of the spatial configuration of ditch-pond system.
基于SWAT-DPS和优化算法的小农集水区沟塘系统空间设计
沟渠和池塘在乡村景观中广泛应用,形成了综合适应系统,在减少非点源污染方面发挥着关键作用。然而,现有的半分布式模型不能准确模拟沟渠和池塘的污染清除,在将模拟、优化和空间配置结合起来进行有效的污染控制方面存在关键差距。为解决这一问题,将新开发的SWAT-DPS模型与多目标优化相结合,构建了在有效平衡环境效益和经济效益的前提下优化沟塘布局的综合框架。该框架能够更精确地模拟网格尺度的污染减排措施,提供更实用的布局解决方案。结果表明,实施植被沟渠、多池和植被过滤带可使NPS污染物减少20 ~ 60%。对比分析表明,在0 ~ 6.28 × 10 26元的成本范围内,各成本水平均能达到降低总氮(TN)和总磷(TP)的要求。具体来说,在中等成本方案中,总氮减少超过60%,而在高成本方案中,总磷减少同样达到60%。本研究在充分考虑沟塘系统空间配置的情况下,为评价NPS污染去除效率提供了一个灵活的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信