Transmittance of Gaussian beams in biological tissues

IF 2.3 3区 物理与天体物理 Q2 OPTICS
Murat Kaan Özcan, Muhsin Caner Gökçe, Yahya Baykal
{"title":"Transmittance of Gaussian beams in biological tissues","authors":"Murat Kaan Özcan, Muhsin Caner Gökçe, Yahya Baykal","doi":"10.1016/j.jqsrt.2024.109312","DOIUrl":null,"url":null,"abstract":"The study examines the average transmittance of Gaussian beams passing through various biological tissues, taking into account the impact of turbulence, absorption, and scattering. The extended Huygens-Fresnel technique, which utilizes the power spectrum of turbulent biological tissues, is applied to determine the optical intensity at the observation point. Additionally, there are tabulated absorption and scattering coefficients available for the application of the Beer-Lambert law, facilitating the calculation of optical light attenuation in biological tissues. Examining the impact of turbulence, as well as absorption and scattering-induced attenuation on the Gaussian beam's propagation, the changes in transmittance are documented across different tissue parameters.","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"49 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1016/j.jqsrt.2024.109312","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The study examines the average transmittance of Gaussian beams passing through various biological tissues, taking into account the impact of turbulence, absorption, and scattering. The extended Huygens-Fresnel technique, which utilizes the power spectrum of turbulent biological tissues, is applied to determine the optical intensity at the observation point. Additionally, there are tabulated absorption and scattering coefficients available for the application of the Beer-Lambert law, facilitating the calculation of optical light attenuation in biological tissues. Examining the impact of turbulence, as well as absorption and scattering-induced attenuation on the Gaussian beam's propagation, the changes in transmittance are documented across different tissue parameters.
生物组织中高斯光束的透射率
研究考察了高斯光束穿过各种生物组织时的平均透射率,并考虑了湍流、吸收和散射的影响。扩展的惠更斯-菲涅尔技术利用湍流生物组织的功率谱来确定观测点的光强度。此外,在应用比尔-朗伯定律时,还提供了吸收和散射系数表,便于计算生物组织中的光衰减。通过研究湍流以及吸收和散射引起的衰减对高斯光束传播的影响,记录了不同组织参数下透射率的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信