Balancing simulation performance and computational intensity of CA models for large-scale land-use change simulations

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zhewei Liang, Xun Liang, Xintong Jiang, Tingyu Li, Qingfeng Guan
{"title":"Balancing simulation performance and computational intensity of CA models for large-scale land-use change simulations","authors":"Zhewei Liang, Xun Liang, Xintong Jiang, Tingyu Li, Qingfeng Guan","doi":"10.1016/j.envsoft.2024.106293","DOIUrl":null,"url":null,"abstract":"Large-scale land-use change simulations are crucial for understanding land dynamics, investigating climate change, and shaping policy regulations. However, conducting fine-resolution land-use change simulations on a large scale is challenging due to high computational demands. Conversely, land-use change simulations with coarse-resolution data distort spatial details, thereby reducing simulation performance. Parallel computing can reduce computational demands but requires significant computational resources. Mixed-cell CA models offer a solution to balance simulation performance and computational intensity. The comparison experiments using various resolution land use datasets demonstrate that mixed-cell CA models, even those with coarse-resolution data, achieve results comparable to those of pure-cell CA models using fine-resolution data, but with significantly reduced simulation time. This highlights the efficiency of mixed-cell CA models in achieving comparable performance with lower computational intensity. Additionally, this study provides a measurement method for the uncertainty of mixed-cell CA models. In summary, this study reveals the unique advantages of mixed-cell CA models in efficient large-scale land use simulations, thereby providing valuable insights and guidance for future land use management and policy decisions.","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"18 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envsoft.2024.106293","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale land-use change simulations are crucial for understanding land dynamics, investigating climate change, and shaping policy regulations. However, conducting fine-resolution land-use change simulations on a large scale is challenging due to high computational demands. Conversely, land-use change simulations with coarse-resolution data distort spatial details, thereby reducing simulation performance. Parallel computing can reduce computational demands but requires significant computational resources. Mixed-cell CA models offer a solution to balance simulation performance and computational intensity. The comparison experiments using various resolution land use datasets demonstrate that mixed-cell CA models, even those with coarse-resolution data, achieve results comparable to those of pure-cell CA models using fine-resolution data, but with significantly reduced simulation time. This highlights the efficiency of mixed-cell CA models in achieving comparable performance with lower computational intensity. Additionally, this study provides a measurement method for the uncertainty of mixed-cell CA models. In summary, this study reveals the unique advantages of mixed-cell CA models in efficient large-scale land use simulations, thereby providing valuable insights and guidance for future land use management and policy decisions.
平衡大规模土地利用变化模拟中 CA 模型的模拟性能和计算强度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信