Self-healing of biochar-cement composites with crystalline admixture exposed to sulphate solution and simulated seawater

IF 6.7 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Xuqun Lin, Quang Dieu Nguyen, Arnaud Castel, Zhizhong Deng, Wengui Li, Vivian W.Y. Tam
{"title":"Self-healing of biochar-cement composites with crystalline admixture exposed to sulphate solution and simulated seawater","authors":"Xuqun Lin, Quang Dieu Nguyen, Arnaud Castel, Zhizhong Deng, Wengui Li, Vivian W.Y. Tam","doi":"10.1016/j.jobe.2024.111564","DOIUrl":null,"url":null,"abstract":"Although many studies considered crystalline admixtures (CA) as the self-healing agent, only limited studies investigated the potential effects of aggressive ions on the self-healing performance of marine structures. Furthermore, there is an increasing trend to use SCMs to improve concrete resilience while lowering carbon footprint. This study investigated the effects of CA and sustainable waste wood biochar (WWB) on the self-healing of cement pastes exposed to simulated seawater or 5 % sodium sulphate solution. Three-point loading was used to initiate the cracks while keeping the cracked samples unseparated. The healing rate was investigated using optical microscopy and binary image processing. The self-healing products characterisation was conducted using Scanned Electron Microscopy equipped with Energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), Thermogravimetric analysis (TG), and Fourier-transform Infrared Spectroscopy (FTIR). Cracks were completely healed after 42 days for CA-based samples when exposing to wet/dry cycles in seawater (SWWD) and sulphate solution (SWD). EDS, XRD and TG results confirmed the formation of calcite as the main healing products, while a small portion of brucite was observed in healing products for SWWD. FTIR spectra further confirmed the formation of C-S-H gel and AFt in healing productions exposed to SWWD and SWD. Although WWB addition did not improve healing performance of WWB-cement composites, it led to a relatively complex cracking path, providing more nucleation sites for the self-healing process.","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"17 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jobe.2024.111564","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Although many studies considered crystalline admixtures (CA) as the self-healing agent, only limited studies investigated the potential effects of aggressive ions on the self-healing performance of marine structures. Furthermore, there is an increasing trend to use SCMs to improve concrete resilience while lowering carbon footprint. This study investigated the effects of CA and sustainable waste wood biochar (WWB) on the self-healing of cement pastes exposed to simulated seawater or 5 % sodium sulphate solution. Three-point loading was used to initiate the cracks while keeping the cracked samples unseparated. The healing rate was investigated using optical microscopy and binary image processing. The self-healing products characterisation was conducted using Scanned Electron Microscopy equipped with Energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), Thermogravimetric analysis (TG), and Fourier-transform Infrared Spectroscopy (FTIR). Cracks were completely healed after 42 days for CA-based samples when exposing to wet/dry cycles in seawater (SWWD) and sulphate solution (SWD). EDS, XRD and TG results confirmed the formation of calcite as the main healing products, while a small portion of brucite was observed in healing products for SWWD. FTIR spectra further confirmed the formation of C-S-H gel and AFt in healing productions exposed to SWWD and SWD. Although WWB addition did not improve healing performance of WWB-cement composites, it led to a relatively complex cracking path, providing more nucleation sites for the self-healing process.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of building engineering
Journal of building engineering Engineering-Civil and Structural Engineering
CiteScore
10.00
自引率
12.50%
发文量
1901
审稿时长
35 days
期刊介绍: The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信