Ultrahigh Proton Selectivity by Assembled Cationic Covalent Organic Framework Nanosheets

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xin Liu, Weibin Lin, Khozama Bader Al Mohawes, Niveen M. Khashab
{"title":"Ultrahigh Proton Selectivity by Assembled Cationic Covalent Organic Framework Nanosheets","authors":"Xin Liu, Weibin Lin, Khozama Bader Al Mohawes, Niveen M. Khashab","doi":"10.1002/anie.202419034","DOIUrl":null,"url":null,"abstract":"Ionic covalent organic framework (COF) nanosheets are becoming increasingly attractive as promising two‐dimensional (2D) materials for proton transport due to their ionic functionality and tailor‐made pores. However, most synthetic methods for nanosheets rely on surface‐assisted methods or phase transformation often yielding nanosheets with low aspect ratios. In this study, we present a bottom‐up approach utilizing an oil‐oil‐water triphase system to achieve the large‐scale synthesis of ionic COF nanosheets. The intermediate oil layer in this system modulates the diffusion rate of monomers from the top oil phase into the aqueous phase, enabling in‐plane anisotropic secondary growth from the initial discrete fibrous structure into large and crystalline COF nanosheets. The ionic COF nanosheets exhibit excellent proton permeability while simultaneously excluding other cations by casting into crack‐free membranes, demonstrating efficient HCl extraction from acidic water waste. This strategy for larger‐scale COF nanosheet growth will offer an alternative platform for designing multifunctional COF membranes with applications in sophisticated separation technologies.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"6 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202419034","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ionic covalent organic framework (COF) nanosheets are becoming increasingly attractive as promising two‐dimensional (2D) materials for proton transport due to their ionic functionality and tailor‐made pores. However, most synthetic methods for nanosheets rely on surface‐assisted methods or phase transformation often yielding nanosheets with low aspect ratios. In this study, we present a bottom‐up approach utilizing an oil‐oil‐water triphase system to achieve the large‐scale synthesis of ionic COF nanosheets. The intermediate oil layer in this system modulates the diffusion rate of monomers from the top oil phase into the aqueous phase, enabling in‐plane anisotropic secondary growth from the initial discrete fibrous structure into large and crystalline COF nanosheets. The ionic COF nanosheets exhibit excellent proton permeability while simultaneously excluding other cations by casting into crack‐free membranes, demonstrating efficient HCl extraction from acidic water waste. This strategy for larger‐scale COF nanosheet growth will offer an alternative platform for designing multifunctional COF membranes with applications in sophisticated separation technologies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信