Daan Willocx, Lucia D’Auria, Danica Walsh, Hugo Scherer, Alaa Alhayek, Mostafa M. Hamed, Franck Borel, Eleonora Diamanti, Anna Katharina Herta Hirsch
{"title":"Fragment Discovery by X‐ray Crystallographic Screening Targeting the CTP Binding Site of Pseudomonas aeruginosa IspD","authors":"Daan Willocx, Lucia D’Auria, Danica Walsh, Hugo Scherer, Alaa Alhayek, Mostafa M. Hamed, Franck Borel, Eleonora Diamanti, Anna Katharina Herta Hirsch","doi":"10.1002/anie.202414615","DOIUrl":null,"url":null,"abstract":"With antimicrobial resistance (AMR) reaching alarming levels, new anti‐infectives with unpreceded mechanisms of action are urgently needed. The 2‐C‐methylerythritol‐D‐erythritol‐4‐phosphate (MEP) pathway represents an attractive source of drug targets due to its essential role in numerous pathogenic Gram‐negative bacteria and Mycobacterium tuberculosis (Mt), whilst being absent in human cells. Here, we solved the first crystal structure of Pseudomonas aeruginosa (Pa) IspD, the third enzyme in the MEP pathway and present the discovery of a fragment‐based compound class identified through crystallographic screening of PaIspD. The initial fragment occupies the CTP binding cavity within the active site. Confirmation of fragment–protein interactions was achieved through 1H saturation–transfer difference nuclear magnetic resonance (1H‐STD‐NMR). Building upon these findings and insights from the co‐crystal structures, we identified two growth vectors for fragment growing. We synthesized derivatives addressing both growth vectors, which showed improved affinities for PaIspD. Our new fragment class targets PaIspD, displays promising affinity and favorable growth vectors for further optimization.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"30 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202414615","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With antimicrobial resistance (AMR) reaching alarming levels, new anti‐infectives with unpreceded mechanisms of action are urgently needed. The 2‐C‐methylerythritol‐D‐erythritol‐4‐phosphate (MEP) pathway represents an attractive source of drug targets due to its essential role in numerous pathogenic Gram‐negative bacteria and Mycobacterium tuberculosis (Mt), whilst being absent in human cells. Here, we solved the first crystal structure of Pseudomonas aeruginosa (Pa) IspD, the third enzyme in the MEP pathway and present the discovery of a fragment‐based compound class identified through crystallographic screening of PaIspD. The initial fragment occupies the CTP binding cavity within the active site. Confirmation of fragment–protein interactions was achieved through 1H saturation–transfer difference nuclear magnetic resonance (1H‐STD‐NMR). Building upon these findings and insights from the co‐crystal structures, we identified two growth vectors for fragment growing. We synthesized derivatives addressing both growth vectors, which showed improved affinities for PaIspD. Our new fragment class targets PaIspD, displays promising affinity and favorable growth vectors for further optimization.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.