Cascade Design and Facile Fabrication of Cu/Cu2O/CuAl‐Layered Double Hydroxides as Efficient Nitrate Reduction Electrocatalysts

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-12-16 DOI:10.1002/smll.202408546
Yajie Bai, Zhenyuan Fang, Kangkang Jia, Xianlei Jiang, Yiwei Gao, Chenxiao Lin, Denghui Ma, Jianming Li, Hongye Bai, Weiqiang Fan
{"title":"Cascade Design and Facile Fabrication of Cu/Cu2O/CuAl‐Layered Double Hydroxides as Efficient Nitrate Reduction Electrocatalysts","authors":"Yajie Bai, Zhenyuan Fang, Kangkang Jia, Xianlei Jiang, Yiwei Gao, Chenxiao Lin, Denghui Ma, Jianming Li, Hongye Bai, Weiqiang Fan","doi":"10.1002/smll.202408546","DOIUrl":null,"url":null,"abstract":"Nitrate (NO<jats:sub>3</jats:sub>¯) reduction reaction (NITRR) presents a promising pathway for the production of renewable NH<jats:sub>3</jats:sub> while concurrently decontaminating NO<jats:sub>3</jats:sub>¯ wastewater. However, the multi‐electron transfer sequence and complex reaction network involved in NO<jats:sub>3</jats:sub>¯ conversion pose significant challenges to achieving high Faradaic efficiency (<jats:italic>FE</jats:italic>). Herein, this work presents ternary Cu/Cu<jats:sub>2</jats:sub>O/CuAl‐layered double hydroxides (LDHs) catalysts designed through a cascade approach and synthesized via a straightforward one‐step electrodeposition method. The resulting catalysts demonstrate peak activity at −0.4 V versus RHE, achieving an impressive of 92.0%, which significantly surpasses most reported binary and ternary catalysts. Density functional theory calculations and atomic force microscopy reveal that the Cu/Cu<jats:sub>2</jats:sub>O/CuAl‐LDHs exploit cascade design by integrating three distinct functions essential for efficient NO<jats:sub>3</jats:sub>¯ reduction: CuAl‐LDH initiates NO<jats:sub>3</jats:sub>¯ adsorption, Cu(111) and Cu₂O(111) cooperatively facilitate NO<jats:sub>3</jats:sub>¯ activation, and Cu(111) promotes NH<jats:sub>3</jats:sub> desorption. Durability tests further confirm that both NH<jats:sub>3</jats:sub> yield and remain stable after 10 cycles, indicating the excellent stability of the Cu/Cu<jats:sub>2</jats:sub>O/CuAl‐LDHs catalysts. These findings underscore the critical role of cascade design strategies in enhancing the performance of electrocatalysts for NO<jats:sub>3</jats:sub>¯ reduction to NH<jats:sub>3</jats:sub>, providing a transformative approach for sustainable ammonia synthesis.","PeriodicalId":228,"journal":{"name":"Small","volume":"3 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408546","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrate (NO3¯) reduction reaction (NITRR) presents a promising pathway for the production of renewable NH3 while concurrently decontaminating NO3¯ wastewater. However, the multi‐electron transfer sequence and complex reaction network involved in NO3¯ conversion pose significant challenges to achieving high Faradaic efficiency (FE). Herein, this work presents ternary Cu/Cu2O/CuAl‐layered double hydroxides (LDHs) catalysts designed through a cascade approach and synthesized via a straightforward one‐step electrodeposition method. The resulting catalysts demonstrate peak activity at −0.4 V versus RHE, achieving an impressive of 92.0%, which significantly surpasses most reported binary and ternary catalysts. Density functional theory calculations and atomic force microscopy reveal that the Cu/Cu2O/CuAl‐LDHs exploit cascade design by integrating three distinct functions essential for efficient NO3¯ reduction: CuAl‐LDH initiates NO3¯ adsorption, Cu(111) and Cu₂O(111) cooperatively facilitate NO3¯ activation, and Cu(111) promotes NH3 desorption. Durability tests further confirm that both NH3 yield and remain stable after 10 cycles, indicating the excellent stability of the Cu/Cu2O/CuAl‐LDHs catalysts. These findings underscore the critical role of cascade design strategies in enhancing the performance of electrocatalysts for NO3¯ reduction to NH3, providing a transformative approach for sustainable ammonia synthesis.

Abstract Image

硝酸盐(NO3¯)还原反应(NITRR)为生产可再生 NH3 提供了一条前景广阔的途径,同时还能净化 NO3¯废水。然而,NO3'转化过程中涉及的多电子转移序列和复杂的反应网络给实现高法拉第效率(FE)带来了巨大挑战。本文介绍了通过级联方法设计的三元 Cu/Cu2O/CuAl 层状双氢氧化物(LDHs)催化剂,并通过简单的一步电沉积法合成了这种催化剂。所得催化剂在 -0.4 V 对 RHE 时显示出峰值活性,达到令人印象深刻的 92.0%,大大超过了大多数已报道的二元和三元催化剂。密度泛函理论计算和原子力显微镜显示,Cu/Cu2O/CuAl-LDHs 采用级联设计,整合了高效还原 NO3¯ 所必需的三种不同功能:CuAl-LDH 启动 NO3¯ 吸附,Cu(111) 和 Cu₂O(111) 协同促进 NO3¯ 活化,Cu(111) 促进 NH3 解吸。耐久性测试进一步证实,NH3 产量在 10 次循环后仍保持稳定,这表明 Cu/Cu2O/CuAl-LDHs 催化剂具有出色的稳定性。这些发现强调了级联设计策略在提高将 NO3 还原成 NH3 的电催化剂性能方面的关键作用,为可持续合成氨提供了一种变革性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信