Arnab Pal, Tanmay Chavan, Jacob Jabbour, Wei Cao, Kaustav Banerjee
{"title":"Three-dimensional transistors with two-dimensional semiconductors for future CMOS scaling","authors":"Arnab Pal, Tanmay Chavan, Jacob Jabbour, Wei Cao, Kaustav Banerjee","doi":"10.1038/s41928-024-01289-8","DOIUrl":null,"url":null,"abstract":"<p>Atomically thin two-dimensional (2D) semiconductors—particularly transition metal dichalcogenides—are potential channel materials for post-silicon complementary metal–oxide–semiconductor (CMOS) field-effect transistors. However, their application in CMOS technology will require implementation in three-dimensional (3D) transistors. Here we report a framework for designing scaled 3D transistors using 2D semiconductors. Our approach is based on non-equilibrium Green’s function quantum transport simulations that incorporate the effects of non-ideal Schottky contacts and inclusive capacitance calculations, with material inputs derived from density functional theory simulations. A comparative performance analysis of different 3D transistors (2D and silicon based) and channel thicknesses is carried out for both low-standby-power and high-performance applications. This suggests that trilayer tungsten disulfide is the most promising material, offering an improvement in energy–delay product of over 55% compared with silicon counterparts, potentially extending CMOS scaling down to a few nanometres. We also show that 2D semiconductors could be uniquely engineered to create 2D nanoplate field-effect transistors that offer nearly tenfold improvement in integration density and drive current over both 2D- and silicon-based 3D field-effect transistors with similar footprints.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"2 1","pages":""},"PeriodicalIF":33.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-024-01289-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Atomically thin two-dimensional (2D) semiconductors—particularly transition metal dichalcogenides—are potential channel materials for post-silicon complementary metal–oxide–semiconductor (CMOS) field-effect transistors. However, their application in CMOS technology will require implementation in three-dimensional (3D) transistors. Here we report a framework for designing scaled 3D transistors using 2D semiconductors. Our approach is based on non-equilibrium Green’s function quantum transport simulations that incorporate the effects of non-ideal Schottky contacts and inclusive capacitance calculations, with material inputs derived from density functional theory simulations. A comparative performance analysis of different 3D transistors (2D and silicon based) and channel thicknesses is carried out for both low-standby-power and high-performance applications. This suggests that trilayer tungsten disulfide is the most promising material, offering an improvement in energy–delay product of over 55% compared with silicon counterparts, potentially extending CMOS scaling down to a few nanometres. We also show that 2D semiconductors could be uniquely engineered to create 2D nanoplate field-effect transistors that offer nearly tenfold improvement in integration density and drive current over both 2D- and silicon-based 3D field-effect transistors with similar footprints.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.