Transfer Learning with a Graph Attention Network and Weighted Loss Function for Screening of Persistent, Bioaccumulative, Mobile, and Toxic Chemicals

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Haobo Wang, Wenjia Liu, Jingwen Chen, Shengshe Ji
{"title":"Transfer Learning with a Graph Attention Network and Weighted Loss Function for Screening of Persistent, Bioaccumulative, Mobile, and Toxic Chemicals","authors":"Haobo Wang, Wenjia Liu, Jingwen Chen, Shengshe Ji","doi":"10.1021/acs.est.4c11085","DOIUrl":null,"url":null,"abstract":"<i>In silico</i> methods for screening hazardous chemicals are necessary for sound management. Persistent, bioaccumulative, mobile, and toxic (PBMT) chemicals persist in the environment and have high mobility in aquatic environments, posing risks to human and ecological health. However, lack of experimental data for the vast number of chemicals hinders identification of PBMT chemicals. Through an extensive search of measured chemical mobility data, as well as persistent, bioaccumulative, and toxic (PBT) chemical inventories, this study constructed comprehensive data sets on PBMT chemicals. To address the limited volume of the PBMT chemical data set, a transfer learning (TL) framework based on graph attention network (GAT) architecture was developed to construct models for screening PBMT chemicals, designating the PBT chemical inventories as source domains and the PBMT chemical data set as target domains. A weighted loss (<i>L</i><sub>W</sub>) function was proposed and proved to mitigate the negative impact of imbalanced data on the model performance. Results indicate the TL-GAT models outperformed GAT models, along with large coverage of applicability domains and interpretability. The constructed models were employed to identify PBMT chemicals from inventories consisting of about 1 × 10<sup>6</sup> chemicals. The developed TL-GAT framework with the <i>L</i><sub>W</sub> function holds broad applicability across diverse tasks, especially those involving small and imbalanced data sets.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"63 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c11085","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In silico methods for screening hazardous chemicals are necessary for sound management. Persistent, bioaccumulative, mobile, and toxic (PBMT) chemicals persist in the environment and have high mobility in aquatic environments, posing risks to human and ecological health. However, lack of experimental data for the vast number of chemicals hinders identification of PBMT chemicals. Through an extensive search of measured chemical mobility data, as well as persistent, bioaccumulative, and toxic (PBT) chemical inventories, this study constructed comprehensive data sets on PBMT chemicals. To address the limited volume of the PBMT chemical data set, a transfer learning (TL) framework based on graph attention network (GAT) architecture was developed to construct models for screening PBMT chemicals, designating the PBT chemical inventories as source domains and the PBMT chemical data set as target domains. A weighted loss (LW) function was proposed and proved to mitigate the negative impact of imbalanced data on the model performance. Results indicate the TL-GAT models outperformed GAT models, along with large coverage of applicability domains and interpretability. The constructed models were employed to identify PBMT chemicals from inventories consisting of about 1 × 106 chemicals. The developed TL-GAT framework with the LW function holds broad applicability across diverse tasks, especially those involving small and imbalanced data sets.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信