{"title":"Mass Transfer‐Enhanced Photothermal Membranes with Synergistic Light Utilization for High‐Turbidity Wastewater Purification","authors":"Jiangchen Fu, Shaoze Xiao, Jiazhen Cao, Zhiyan Liang, Jiabin Chen, Yue Jiang, Mingyang Xing","doi":"10.1002/anie.202421800","DOIUrl":null,"url":null,"abstract":"The photo‐Fenton process faces significant limitations in treating high‐turbidity, colored wastewater due to light attenuation and impurity interference (blocked mass transfer). To address these issues, we developed a suspended photothermal Fenton membrane by loading a photothermal catalyst on a hydrophobically modified cotton filter paper, enabling precise suspension 1 mm below the water surface. This design achieved 89.49 % light utilization and high chemical oxygen demand (COD) removal, even in wastewater with extreme chromaticity (10 multiples) and turbidity (703 NTU). The enhanced photothermal conversion accelerated molybdenum co‐catalyzed Fenton reactions and improved peroxymonosulfate (PMS) activation, maintaining over 90 % phenol removal for 15 days. Mechanistic simulations revealed improved mass transfer of reactive oxygen species (ROS) and pollutants at the solid‐liquid interface, with PMS diffusion identified as the rate‐limiting step. The membrane resisted fouling from suspended solids and maintained stable operation in soil‐containing solutions for 10 days. This innovative approach offers an efficient solution for degrading pollutants in dark‐colored, high‐turbidity wastewater, overcoming traditional process limitations.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"37 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421800","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The photo‐Fenton process faces significant limitations in treating high‐turbidity, colored wastewater due to light attenuation and impurity interference (blocked mass transfer). To address these issues, we developed a suspended photothermal Fenton membrane by loading a photothermal catalyst on a hydrophobically modified cotton filter paper, enabling precise suspension 1 mm below the water surface. This design achieved 89.49 % light utilization and high chemical oxygen demand (COD) removal, even in wastewater with extreme chromaticity (10 multiples) and turbidity (703 NTU). The enhanced photothermal conversion accelerated molybdenum co‐catalyzed Fenton reactions and improved peroxymonosulfate (PMS) activation, maintaining over 90 % phenol removal for 15 days. Mechanistic simulations revealed improved mass transfer of reactive oxygen species (ROS) and pollutants at the solid‐liquid interface, with PMS diffusion identified as the rate‐limiting step. The membrane resisted fouling from suspended solids and maintained stable operation in soil‐containing solutions for 10 days. This innovative approach offers an efficient solution for degrading pollutants in dark‐colored, high‐turbidity wastewater, overcoming traditional process limitations.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.