{"title":"Mass Transfer-Enhanced Photothermal Membranes with Synergistic Light Utilization for High-Turbidity Wastewater Purification","authors":"Jiangchen Fu, Shaoze Xiao, Jiazhen Cao, Zhiyan Liang, Jiabin Chen, Yue Jiang, Prof. Mingyang Xing","doi":"10.1002/anie.202421800","DOIUrl":null,"url":null,"abstract":"<p>The photo-Fenton process faces significant limitations in treating high-turbidity, colored wastewater due to light attenuation and impurity interference (blocked mass transfer). To address these issues, we developed a suspended photothermal Fenton membrane by loading a photothermal catalyst on a hydrophobically modified cotton filter paper, enabling precise suspension 1 mm below the water surface. This design achieved 89.49 % light utilization and high chemical oxygen demand (COD) removal, even in wastewater with extreme chromaticity (10 multiples) and turbidity (703 NTU). The enhanced photothermal conversion accelerated molybdenum co-catalyzed Fenton reactions and improved peroxymonosulfate (PMS) activation, maintaining over 90 % phenol removal for 15 days. Mechanistic simulations revealed improved mass transfer of reactive oxygen species (ROS) and pollutants at the solid–liquid interface, with PMS diffusion identified as the rate-limiting step. The membrane resisted fouling from suspended solids and maintained stable operation in soil-containing solutions for 10 days. This innovative approach offers an efficient solution for degrading pollutants in dark-colored, high-turbidity wastewater, overcoming traditional process limitations.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 11","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202421800","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The photo-Fenton process faces significant limitations in treating high-turbidity, colored wastewater due to light attenuation and impurity interference (blocked mass transfer). To address these issues, we developed a suspended photothermal Fenton membrane by loading a photothermal catalyst on a hydrophobically modified cotton filter paper, enabling precise suspension 1 mm below the water surface. This design achieved 89.49 % light utilization and high chemical oxygen demand (COD) removal, even in wastewater with extreme chromaticity (10 multiples) and turbidity (703 NTU). The enhanced photothermal conversion accelerated molybdenum co-catalyzed Fenton reactions and improved peroxymonosulfate (PMS) activation, maintaining over 90 % phenol removal for 15 days. Mechanistic simulations revealed improved mass transfer of reactive oxygen species (ROS) and pollutants at the solid–liquid interface, with PMS diffusion identified as the rate-limiting step. The membrane resisted fouling from suspended solids and maintained stable operation in soil-containing solutions for 10 days. This innovative approach offers an efficient solution for degrading pollutants in dark-colored, high-turbidity wastewater, overcoming traditional process limitations.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.