{"title":"A unique fluorescence metal-organic framework for ultrasensitive fluorescent and colorimetric bimodal detection of phosphate.","authors":"Chan Yang, Shuo Tian, Yanling Zhao, Longcheng Yang, Liuting Mo, Weiying Lin","doi":"10.1016/j.saa.2024.125571","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring the concentration of phosphate is crucial for environmental protection and human health due to its severe ecological and health risks associated with elevated concentrations. Herein, a fluorescent-colorimetric bimodal nanoprobe based on the unique fluorescent metal-organic frameworks (Zr-PDI) has been developed for high-efficiency quantification of phosphate. The metal-oxygen coordination in Zr-PDI effectively diminished its fluorescence. However, the introduction of phosphate could weaken the metal-oxygen coordination interaction, leading to fluorescence recovery and absorption spectra changes of Zr-PDI. Taking advantage of these characteristics, Zr-PDI was exploited as a fluorescent-colorimetric bimodal detection tool for phosphate, offering excellent selectivity, a wide detection range, and high accuracy. Notably, the detection limit of fluorescence detection mode was as low as 0.023 μM, enabling ultrasensitive detection of phosphate. Furthermore, the Zr-PDI-based nanoprobe has achieved sensitive and reliable quantification of phosphate in Yong River and diabetic mouse serum samples. This proposed strategy provides a powerful, convenient, and practical tool for detecting phosphate in environmental and biological samples.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"329 ","pages":"125571"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2024.125571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring the concentration of phosphate is crucial for environmental protection and human health due to its severe ecological and health risks associated with elevated concentrations. Herein, a fluorescent-colorimetric bimodal nanoprobe based on the unique fluorescent metal-organic frameworks (Zr-PDI) has been developed for high-efficiency quantification of phosphate. The metal-oxygen coordination in Zr-PDI effectively diminished its fluorescence. However, the introduction of phosphate could weaken the metal-oxygen coordination interaction, leading to fluorescence recovery and absorption spectra changes of Zr-PDI. Taking advantage of these characteristics, Zr-PDI was exploited as a fluorescent-colorimetric bimodal detection tool for phosphate, offering excellent selectivity, a wide detection range, and high accuracy. Notably, the detection limit of fluorescence detection mode was as low as 0.023 μM, enabling ultrasensitive detection of phosphate. Furthermore, the Zr-PDI-based nanoprobe has achieved sensitive and reliable quantification of phosphate in Yong River and diabetic mouse serum samples. This proposed strategy provides a powerful, convenient, and practical tool for detecting phosphate in environmental and biological samples.