Host-microbiota interplay in arsenic metabolism: Implications on host glucose homeostasis.

Dinakaran Vasudevan, Buvaneswari Gajendhran, Krishnan Swaminathan, Ganesan Velmurugan
{"title":"Host-microbiota interplay in arsenic metabolism: Implications on host glucose homeostasis.","authors":"Dinakaran Vasudevan, Buvaneswari Gajendhran, Krishnan Swaminathan, Ganesan Velmurugan","doi":"10.1016/j.cbi.2024.111354","DOIUrl":null,"url":null,"abstract":"<p><p>Arsenic (As), a naturally occurring element with unique properties, has been recognized as the largest mass poisoning in the world by the World Health Organization (WHO). Approximately 200 million people worldwide are exposed to toxic levels of arsenic due to natural and anthropogenic activities. This widespread exposure necessitates a deeper understanding of microbe-arsenic interactions and their potential influence on host exposure and health risks. It is a major causative factor for metabolic diseases, including diabetes. Arsenic exposure has been linked to dysfunction in various cell types and tissues, notably affecting pancreatic islet cells. Numerous mechanisms have been identified to be responsible for arsenic exposure under both in vitro and in vivo conditions. These mechanisms contribute to the regulation of processes underlying diabetes etiology, such as glucose-stimulated insulin secretion from pancreatic beta cells. Unlike other toxic elements, arsenic undergoes metabolism by living organisms, including microbes, plants, and animals. Other toxic elements like Lead (Pb) and mercury (Hg) are generally not metabolized in the same way as Arsenic in microbes, plants and animals. In this review, we strive to initiate a dialogue by reviewing known aspects of microbe-arsenic interactions and placing it in the context of the potential for influencing host exposure and health risks. This review provides an up-to-date insight into arsenic metabolism by the human body and its associated microbiota, as well as the deciphered molecular pathways linking the different species of arsenic in the etiology of diabetes. Additionally, the future perspectives of mitigation and detoxification of arsenic in translational medicine and limitations in current scenarios are discussed. The comprehensive review presented here underscores the importance of exploring the complex interplay between arsenic metabolism, host-microbiota interactions, and their implications on glucose homeostasis and metabolic diseases. It emphasizes the need for continued research to develop effective strategies for mitigating arsenic-related health risks and fostering better translational medicine approaches.</p>","PeriodicalId":93932,"journal":{"name":"Chemico-biological interactions","volume":" ","pages":"111354"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-biological interactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cbi.2024.111354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Arsenic (As), a naturally occurring element with unique properties, has been recognized as the largest mass poisoning in the world by the World Health Organization (WHO). Approximately 200 million people worldwide are exposed to toxic levels of arsenic due to natural and anthropogenic activities. This widespread exposure necessitates a deeper understanding of microbe-arsenic interactions and their potential influence on host exposure and health risks. It is a major causative factor for metabolic diseases, including diabetes. Arsenic exposure has been linked to dysfunction in various cell types and tissues, notably affecting pancreatic islet cells. Numerous mechanisms have been identified to be responsible for arsenic exposure under both in vitro and in vivo conditions. These mechanisms contribute to the regulation of processes underlying diabetes etiology, such as glucose-stimulated insulin secretion from pancreatic beta cells. Unlike other toxic elements, arsenic undergoes metabolism by living organisms, including microbes, plants, and animals. Other toxic elements like Lead (Pb) and mercury (Hg) are generally not metabolized in the same way as Arsenic in microbes, plants and animals. In this review, we strive to initiate a dialogue by reviewing known aspects of microbe-arsenic interactions and placing it in the context of the potential for influencing host exposure and health risks. This review provides an up-to-date insight into arsenic metabolism by the human body and its associated microbiota, as well as the deciphered molecular pathways linking the different species of arsenic in the etiology of diabetes. Additionally, the future perspectives of mitigation and detoxification of arsenic in translational medicine and limitations in current scenarios are discussed. The comprehensive review presented here underscores the importance of exploring the complex interplay between arsenic metabolism, host-microbiota interactions, and their implications on glucose homeostasis and metabolic diseases. It emphasizes the need for continued research to develop effective strategies for mitigating arsenic-related health risks and fostering better translational medicine approaches.

砷代谢中宿主与微生物群的相互作用:对宿主葡萄糖稳态的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信