Zhengqin Su, Yongjian Su, Xiaozhen Shen, Jiawei Zhang, Ting Zeng, Jialing Li, Shiyi Chen, Kai Shao, Shiyue Zhang, Dan Luo, Liping Hu, Xiaojing Guo, Hai Li
{"title":"Analysis of differentially methylated sites and regions associated with intrauterine transmission of hepatitis B virus in infants.","authors":"Zhengqin Su, Yongjian Su, Xiaozhen Shen, Jiawei Zhang, Ting Zeng, Jialing Li, Shiyi Chen, Kai Shao, Shiyue Zhang, Dan Luo, Liping Hu, Xiaojing Guo, Hai Li","doi":"10.1016/j.meegid.2024.105705","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The goal is to identify methylation sites linked to transmission and their impact on host gene expression and HBV spread, aiming to uncover new molecular targets for preventing and treating intrauterine HBV infection.</p><p><strong>Methods: </strong>This study recruited 1205 infants born to HBsAg-positive mothers in Liuzhou City, China, between July 2023 and January 2024. Infants were followed up at 7-12 months of age and classified as HBsAg-positive (case, n = 5) or HBsAg-negative (control, n = 14) based on serological testing. Peripheral blood samples were collected for DNA extraction. DNA methylation profiling was performed using the Illumina Infinium MethylationEPIC BeadChip (850 K). Data were processed using the ChAMP package in R, including quality control, normalization, and identification of Differentially Methylated Positions (DMPs) and differentially methylated regions (DMRs). DMPs and DMRs were annotated using ANNOVAR 2018Apr16, and GO enrichment analysis was conducted using DAVID. The study was approved by the Guangxi University of Chinese Medicine Ethics Committee, and informed consent was obtained.</p><p><strong>Results: </strong>We identified 734,978 DMPs and 660 DMRs, with 1813 DMPs and 221 DMRs showing significant differences between groups. HBV-infected infants exhibited lower overall genomic methylation levels, with significant concentrations in gene body regions and CpG islands. GO enrichment analysis indicated that differentially methylated genes were enriched in processes related to cell adhesion and calcium ion binding.</p><p><strong>Conclusions: </strong>Prenatal HBV exposure was associated with significant infant hypomethylation, particularly in regulatory regions like TSS1500, TSS200, and CpG islands, potentially impacting gene expression. Enrichment of immune-related pathways among differentially methylated genes suggests that HBV may alter infant immune development through epigenetic modifications.</p>","PeriodicalId":54986,"journal":{"name":"Infection Genetics and Evolution","volume":" ","pages":"105705"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection Genetics and Evolution","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.meegid.2024.105705","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The goal is to identify methylation sites linked to transmission and their impact on host gene expression and HBV spread, aiming to uncover new molecular targets for preventing and treating intrauterine HBV infection.
Methods: This study recruited 1205 infants born to HBsAg-positive mothers in Liuzhou City, China, between July 2023 and January 2024. Infants were followed up at 7-12 months of age and classified as HBsAg-positive (case, n = 5) or HBsAg-negative (control, n = 14) based on serological testing. Peripheral blood samples were collected for DNA extraction. DNA methylation profiling was performed using the Illumina Infinium MethylationEPIC BeadChip (850 K). Data were processed using the ChAMP package in R, including quality control, normalization, and identification of Differentially Methylated Positions (DMPs) and differentially methylated regions (DMRs). DMPs and DMRs were annotated using ANNOVAR 2018Apr16, and GO enrichment analysis was conducted using DAVID. The study was approved by the Guangxi University of Chinese Medicine Ethics Committee, and informed consent was obtained.
Results: We identified 734,978 DMPs and 660 DMRs, with 1813 DMPs and 221 DMRs showing significant differences between groups. HBV-infected infants exhibited lower overall genomic methylation levels, with significant concentrations in gene body regions and CpG islands. GO enrichment analysis indicated that differentially methylated genes were enriched in processes related to cell adhesion and calcium ion binding.
Conclusions: Prenatal HBV exposure was associated with significant infant hypomethylation, particularly in regulatory regions like TSS1500, TSS200, and CpG islands, potentially impacting gene expression. Enrichment of immune-related pathways among differentially methylated genes suggests that HBV may alter infant immune development through epigenetic modifications.
期刊介绍:
(aka Journal of Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases -- MEEGID)
Infectious diseases constitute one of the main challenges to medical science in the coming century. The impressive development of molecular megatechnologies and of bioinformatics have greatly increased our knowledge of the evolution, transmission and pathogenicity of infectious diseases. Research has shown that host susceptibility to many infectious diseases has a genetic basis. Furthermore, much is now known on the molecular epidemiology, evolution and virulence of pathogenic agents, as well as their resistance to drugs, vaccines, and antibiotics. Equally, research on the genetics of disease vectors has greatly improved our understanding of their systematics, has increased our capacity to identify target populations for control or intervention, and has provided detailed information on the mechanisms of insecticide resistance.
However, the genetics and evolutionary biology of hosts, pathogens and vectors have tended to develop as three separate fields of research. This artificial compartmentalisation is of concern due to our growing appreciation of the strong co-evolutionary interactions among hosts, pathogens and vectors.
Infection, Genetics and Evolution and its companion congress [MEEGID](http://www.meegidconference.com/) (for Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases) are the main forum acting for the cross-fertilization between evolutionary science and biomedical research on infectious diseases.
Infection, Genetics and Evolution is the only journal that welcomes articles dealing with the genetics and evolutionary biology of hosts, pathogens and vectors, and coevolution processes among them in relation to infection and disease manifestation. All infectious models enter the scope of the journal, including pathogens of humans, animals and plants, either parasites, fungi, bacteria, viruses or prions. The journal welcomes articles dealing with genetics, population genetics, genomics, postgenomics, gene expression, evolutionary biology, population dynamics, mathematical modeling and bioinformatics. We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services .