{"title":"Individual and interactive effects of temperature and blue light on canola growth, lignin biosynthesis and methane emissions","authors":"Brooke T. Dauphinee, Mirwais M. Qaderi","doi":"10.1016/j.jplph.2024.154402","DOIUrl":null,"url":null,"abstract":"<div><div>It is now well documented that plants produce methane (CH<sub>4</sub>) under aerobic conditions. However, the mechanisms of methane production in plants, its potential precursors, and the factors that are involved in the process are not fully understood. Few studies have considered the effects of blue light on methane emissions from plants; however, the combined effects of temperature and blue light have not been studied. We studied the effects of two temperature regimes (22/18 °C and 28/24 °C; 16 h light/8 h dark), and three blue light levels (0, 4, and 8 mW cm<sup>−2</sup>; 400–500 nm) on the growth, lignin, and methane emissions of canola (<em>Brassica napus</em>). Plants were grown under experimental conditions for three weeks, and then methane, monolignols and other plant traits, including growth, biomass, growth index, photosynthesis, chlorophyll fluorescence, and photosynthetic pigments, were measured. Blue light significantly increased methane emissions, stem height, and growth rate, but decreased stem diameter, leaf number and area, biomass, specific leaf mass, leaf area ratio, shoot/root mass ratio, photosynthetic pigments, sinapyl alcohol, and coniferyl aldehyde. Higher temperature significantly decreased stem diameter, non-photochemical quenching, sinapyl alcohol, and coniferyl aldehyde. Methane emission was negatively correlated with plant dry mass, leaf area per plant, and maximum quantum yield of photosystem II. However, no significant relationships were found between methane and monolignols. In conclusion, plants emitted more methane under stress conditions; however, further studies are required to understand the potential precursors of methane and the mechanism of its synthesis in plants.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"304 ","pages":"Article 154402"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724002335","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
It is now well documented that plants produce methane (CH4) under aerobic conditions. However, the mechanisms of methane production in plants, its potential precursors, and the factors that are involved in the process are not fully understood. Few studies have considered the effects of blue light on methane emissions from plants; however, the combined effects of temperature and blue light have not been studied. We studied the effects of two temperature regimes (22/18 °C and 28/24 °C; 16 h light/8 h dark), and three blue light levels (0, 4, and 8 mW cm−2; 400–500 nm) on the growth, lignin, and methane emissions of canola (Brassica napus). Plants were grown under experimental conditions for three weeks, and then methane, monolignols and other plant traits, including growth, biomass, growth index, photosynthesis, chlorophyll fluorescence, and photosynthetic pigments, were measured. Blue light significantly increased methane emissions, stem height, and growth rate, but decreased stem diameter, leaf number and area, biomass, specific leaf mass, leaf area ratio, shoot/root mass ratio, photosynthetic pigments, sinapyl alcohol, and coniferyl aldehyde. Higher temperature significantly decreased stem diameter, non-photochemical quenching, sinapyl alcohol, and coniferyl aldehyde. Methane emission was negatively correlated with plant dry mass, leaf area per plant, and maximum quantum yield of photosystem II. However, no significant relationships were found between methane and monolignols. In conclusion, plants emitted more methane under stress conditions; however, further studies are required to understand the potential precursors of methane and the mechanism of its synthesis in plants.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.