Elizaveta Koroleva, Barbra Toplis, Malcolm Taylor, Corné van Deventer, Heidi C Steffen, Christiaan van den Heever, Nelesh P Govender, Sybren de Hoog, Alfred Botha
{"title":"Exploring polyamine metabolism of the yeast-like fungus, Emergomyces africanus.","authors":"Elizaveta Koroleva, Barbra Toplis, Malcolm Taylor, Corné van Deventer, Heidi C Steffen, Christiaan van den Heever, Nelesh P Govender, Sybren de Hoog, Alfred Botha","doi":"10.1093/femsyr/foae038","DOIUrl":null,"url":null,"abstract":"<p><p>Emergomyces africanus is a thermally dimorphic pathogen causing severe morbidity and mortality in immunocompromized patients. Its transition to a pathogenic yeast-like phase in the human host is a notable virulence mechanism. Recent studies suggest polyamines as key players in dimorphic switching, yet their precise functions remain enigmatic. This work aimed to explore polyamine metabolism of two clinical strains of E. africanus (CBS 136260 and CBS 140360) in mycelial and yeast-like phases. In this first report of the polyamine profile of E. africanus, we reveal, using mass spectrometry, spermidine, and spermine as the major polyamines in both phases. The secretion of these amines was significantly higher in the pathogenic yeast-like phase than in the mycelial phase, warranting further investigation into the implications thereof on virulence. Additionally, we detected the activity of several polyamine biosynthesis enzymes, including arginine decarboxylase, agmatinase, arginase, and ornithine decarboxylase, with significant differences in enzyme expression between morphological phases and strains. Finally, we provide initial evidence for the requirement for spermine, spermidine, and putrescine during the thermally induced dimorphic switch of E. africanus, with strain-specific differences in the production of these amines. Overall, our study presents novel insight into polyamine metabolism and its role in dimorphism of E. africanus.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foae038","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Emergomyces africanus is a thermally dimorphic pathogen causing severe morbidity and mortality in immunocompromized patients. Its transition to a pathogenic yeast-like phase in the human host is a notable virulence mechanism. Recent studies suggest polyamines as key players in dimorphic switching, yet their precise functions remain enigmatic. This work aimed to explore polyamine metabolism of two clinical strains of E. africanus (CBS 136260 and CBS 140360) in mycelial and yeast-like phases. In this first report of the polyamine profile of E. africanus, we reveal, using mass spectrometry, spermidine, and spermine as the major polyamines in both phases. The secretion of these amines was significantly higher in the pathogenic yeast-like phase than in the mycelial phase, warranting further investigation into the implications thereof on virulence. Additionally, we detected the activity of several polyamine biosynthesis enzymes, including arginine decarboxylase, agmatinase, arginase, and ornithine decarboxylase, with significant differences in enzyme expression between morphological phases and strains. Finally, we provide initial evidence for the requirement for spermine, spermidine, and putrescine during the thermally induced dimorphic switch of E. africanus, with strain-specific differences in the production of these amines. Overall, our study presents novel insight into polyamine metabolism and its role in dimorphism of E. africanus.
期刊介绍:
FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.