Effect of anaerobic digested sludge biochar on soil quality improvement: An insight into mechanisms, microbial composition, and toxicity risk assessment.

Zhuo Li, Farhan Hafeez, Jing Zhang, Kai Chen, Bizhen Zeng, Feilan Qi, Lan Yang, Hongtao Zhu
{"title":"Effect of anaerobic digested sludge biochar on soil quality improvement: An insight into mechanisms, microbial composition, and toxicity risk assessment.","authors":"Zhuo Li, Farhan Hafeez, Jing Zhang, Kai Chen, Bizhen Zeng, Feilan Qi, Lan Yang, Hongtao Zhu","doi":"10.1016/j.chemosphere.2024.143948","DOIUrl":null,"url":null,"abstract":"<p><p>Biochar is widely acknowledged for its remarkable impact on soil conditioning. However, the influence of different sources of biochar, particularly anaerobic digested sludge biochar (ADBC) derived from anaerobic digested sludge and biochar derived from waste activated sludge, on alkaline soil remains largely unexplored. To address this knowledge gap, a comprehensive field experiment was conducted over a period of 180 days to investigate the effects of ADBC on slightly alkaline soil. This study evaluated various aspects, including soil properties, nutrient content, microbial composition, and soil toxicity. The results demonstrated significant improvements in the quality of alkaline soil following the application of ADBC. Notably, soil pH decreased from 8.24 to 7.5, while conductivity increased from 56.7 μs/cm to 249.0 μs/cm, total organic carbon from 13.5 g/kg to 19.9 g/kg, available nitrogen from 45.5 g/kg to 237.5 g/kg, and available phosphorus from 549.5 g/kg to 1396.7 g/kg. Moreover, ADBC substantially increased the relative abundance of functional bacteria associated with nutrient cycling, such as Proteobacteria, Actinobacteriota, and Bacteroidota. Conversely, the assessment of biotoxicity revealed a decrease in toxicity with increasing preparation temperature and particle size. These findings highlight the promising potential of ADBC for improving the key properties of alkaline and nutrient-poor soils crucial for overall soil productivity.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143948"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biochar is widely acknowledged for its remarkable impact on soil conditioning. However, the influence of different sources of biochar, particularly anaerobic digested sludge biochar (ADBC) derived from anaerobic digested sludge and biochar derived from waste activated sludge, on alkaline soil remains largely unexplored. To address this knowledge gap, a comprehensive field experiment was conducted over a period of 180 days to investigate the effects of ADBC on slightly alkaline soil. This study evaluated various aspects, including soil properties, nutrient content, microbial composition, and soil toxicity. The results demonstrated significant improvements in the quality of alkaline soil following the application of ADBC. Notably, soil pH decreased from 8.24 to 7.5, while conductivity increased from 56.7 μs/cm to 249.0 μs/cm, total organic carbon from 13.5 g/kg to 19.9 g/kg, available nitrogen from 45.5 g/kg to 237.5 g/kg, and available phosphorus from 549.5 g/kg to 1396.7 g/kg. Moreover, ADBC substantially increased the relative abundance of functional bacteria associated with nutrient cycling, such as Proteobacteria, Actinobacteriota, and Bacteroidota. Conversely, the assessment of biotoxicity revealed a decrease in toxicity with increasing preparation temperature and particle size. These findings highlight the promising potential of ADBC for improving the key properties of alkaline and nutrient-poor soils crucial for overall soil productivity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信