Nathália Rocco-Machado, Max Deng, Yi He, Rodney L Levine
{"title":"Oxidation of CaMKIIα cysteines inhibits autonomous activation induced by phosphorylation.","authors":"Nathália Rocco-Machado, Max Deng, Yi He, Rodney L Levine","doi":"10.1016/j.abb.2024.110268","DOIUrl":null,"url":null,"abstract":"<p><p>Ca<sup>2+</sup>/calmodulin-dependent protein kinase II α (CaMKIIα) \"autonomous\" activation induced by Thr286 phosphorylation has a crucial role in synaptic plasticity. Previous studies showed that in Alzheimer's disease brain, CaMKIIα autophosphorylation at Thr286 is reduced while the level of cysteine-oxidized CAMKIIα is elevated. We performed tryptic mapping of the oxidized CaMKIIα and discovered the formation of a disulfide between the N-terminal Cys6 and the regulatory domain Cys280. The apparent pK<sub>a</sub> values of Cys6 and Cys280 are 7.1 and 7.7, respectively, lower than the 8.5 for free Cys. The low apparent pK<sub>a</sub> of Cys6 facilitates the oxidation of its thiol to the sulfenic acid at physiological pH. The thiolate of Cys280 can then attack the sulfenic acid to form a disulfide. Using an antibody against phosphorylated Thr286, we showed that disulfide formation prevents Thr286 phosphorylation. CaMKIIα autonomous activation induced by disulfide formation is much lower than the autonomous activation induced by phosphorylation. The decreased autonomous activation may contribute to the synaptic impairment of Alzheimer's disease. We also generated a CaMKIIα mutant in which Cys6 was mutated to Ser6. This mutation prevented disulfide formation and restored autonomous activation induced by phosphorylation. Our findings provide insight into the mechanistic details of CaMKIIα autonomous activation induced by disulfide formation that may contribute to the impairment of long-term potentiation in Alzheimer's disease.</p>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":" ","pages":"110268"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.abb.2024.110268","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) "autonomous" activation induced by Thr286 phosphorylation has a crucial role in synaptic plasticity. Previous studies showed that in Alzheimer's disease brain, CaMKIIα autophosphorylation at Thr286 is reduced while the level of cysteine-oxidized CAMKIIα is elevated. We performed tryptic mapping of the oxidized CaMKIIα and discovered the formation of a disulfide between the N-terminal Cys6 and the regulatory domain Cys280. The apparent pKa values of Cys6 and Cys280 are 7.1 and 7.7, respectively, lower than the 8.5 for free Cys. The low apparent pKa of Cys6 facilitates the oxidation of its thiol to the sulfenic acid at physiological pH. The thiolate of Cys280 can then attack the sulfenic acid to form a disulfide. Using an antibody against phosphorylated Thr286, we showed that disulfide formation prevents Thr286 phosphorylation. CaMKIIα autonomous activation induced by disulfide formation is much lower than the autonomous activation induced by phosphorylation. The decreased autonomous activation may contribute to the synaptic impairment of Alzheimer's disease. We also generated a CaMKIIα mutant in which Cys6 was mutated to Ser6. This mutation prevented disulfide formation and restored autonomous activation induced by phosphorylation. Our findings provide insight into the mechanistic details of CaMKIIα autonomous activation induced by disulfide formation that may contribute to the impairment of long-term potentiation in Alzheimer's disease.
期刊介绍:
Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics.
Research Areas Include:
• Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing
• Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions
• Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.