Fabrication and in vivo testing of a sub-mm duckbill valve for hydrocephalus treatment.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Yuna Jung, Daniel Gulick, Jennifer Blain Christen
{"title":"Fabrication and in vivo testing of a sub-mm duckbill valve for hydrocephalus treatment.","authors":"Yuna Jung, Daniel Gulick, Jennifer Blain Christen","doi":"10.1038/s41378-024-00829-8","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrocephalus is characterized by the accumulation of excess cerebrospinal fluid (CSF) in the cranium due to an imbalance between production and absorption of CSF. The standard treatment involves the implantation of a shunt to divert excess CSF into the peritoneal cavity, but these shunts exhibit high failure rates over time. In pursuit of improved reliability and performance, this study proposes a miniaturized valve designed to mimic the natural one-way valve function of the arachnoid granulations and thereby replace the shunts. A benchtop testing setup was employed to characterize the behavior of the fabricated valve. Additionally, an animal study was conducted to assess the valve's in vivo performance. This involved the injection of saline into the lateral ventricle to elevate intracranial pressure (ICP), followed by the drainage of the saline through the valve inserted into the cisterna magna (CM) to reduce pressure. Our prototype features a silicone duckbill valve design combined with a silicone tube as an inlet. Through benchtop testing, the valve exhibited unidirectional flow with negligible reverse leakage, revealing that critical parameters such as the width of the fluid channel (W) and bill length (L) could be controlled to optimize valve performance. Notably, the valve configuration with W= 0.8mm and L < 0.5mm achieved the lowest cracking pressure (2.22 ± 0.07 mmHg) and outflow resistance (22.00 ± 0.70 mmHg/mL/min) within the low cracking pressure range of conventional shunts. Our observations of the in vivo test demonstrated that when untreated states, pressure differences from baseline to peak exceeded 20 mmHg due to the absence of drainage, resulting in sustained pressure elevation. Conversely, upon treating states by removing the clamp, pressure differences from baseline to peak remained below 5 mmHg, indicating effective drainage of injected saline through the valve. These promising results highlight the potential of the miniaturized duckbill valve as an alternative for ICP management in hydrocephalus, offering improved control and reliability compared to conventional shunting systems. Further research is required to evaluate the valve's performance as a chronic implant.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"190"},"PeriodicalIF":7.3000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646279/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00829-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrocephalus is characterized by the accumulation of excess cerebrospinal fluid (CSF) in the cranium due to an imbalance between production and absorption of CSF. The standard treatment involves the implantation of a shunt to divert excess CSF into the peritoneal cavity, but these shunts exhibit high failure rates over time. In pursuit of improved reliability and performance, this study proposes a miniaturized valve designed to mimic the natural one-way valve function of the arachnoid granulations and thereby replace the shunts. A benchtop testing setup was employed to characterize the behavior of the fabricated valve. Additionally, an animal study was conducted to assess the valve's in vivo performance. This involved the injection of saline into the lateral ventricle to elevate intracranial pressure (ICP), followed by the drainage of the saline through the valve inserted into the cisterna magna (CM) to reduce pressure. Our prototype features a silicone duckbill valve design combined with a silicone tube as an inlet. Through benchtop testing, the valve exhibited unidirectional flow with negligible reverse leakage, revealing that critical parameters such as the width of the fluid channel (W) and bill length (L) could be controlled to optimize valve performance. Notably, the valve configuration with W= 0.8mm and L < 0.5mm achieved the lowest cracking pressure (2.22 ± 0.07 mmHg) and outflow resistance (22.00 ± 0.70 mmHg/mL/min) within the low cracking pressure range of conventional shunts. Our observations of the in vivo test demonstrated that when untreated states, pressure differences from baseline to peak exceeded 20 mmHg due to the absence of drainage, resulting in sustained pressure elevation. Conversely, upon treating states by removing the clamp, pressure differences from baseline to peak remained below 5 mmHg, indicating effective drainage of injected saline through the valve. These promising results highlight the potential of the miniaturized duckbill valve as an alternative for ICP management in hydrocephalus, offering improved control and reliability compared to conventional shunting systems. Further research is required to evaluate the valve's performance as a chronic implant.

用于脑积水治疗的亚毫米鸭嘴阀的制造和体内测试。
脑积水的特点是由于脑脊液的产生和吸收不平衡,导致脑脊液(CSF)在头盖骨内积聚过多。标准的治疗包括植入分流器将多余的脑脊液转移到腹膜腔,但随着时间的推移,这些分流器的失败率很高。为了提高可靠性和性能,本研究提出了一种小型瓣膜,旨在模仿蛛网膜颗粒的自然单向阀功能,从而取代分流器。采用台架试验装置对所制备的阀门进行了性能表征。此外,还进行了动物研究,以评估瓣膜的体内性能。这包括向侧脑室注射生理盐水以提高颅内压(ICP),然后通过插入大池(CM)的瓣膜排出生理盐水以降低压力。我们的原型采用硅胶鸭嘴阀设计,结合硅胶管作为入口。通过台架测试,该阀表现为单向流动,反泄漏可以忽略不计,表明可以控制流体通道宽度(W)和喷嘴长度(L)等关键参数来优化阀门性能。值得注意的是,W= 0.8mm、L < 0.5mm的阀门配置在常规分流器的低破裂压力范围内获得了最低的破裂压力(2.22±0.07 mmHg)和流出阻力(22.00±0.70 mmHg/mL/min)。我们对体内试验的观察表明,在未经治疗的状态下,由于缺乏引流,从基线到峰值的压力差超过20 mmHg,导致持续的压力升高。相反,在通过移除钳来处理状态时,从基线到峰值的压差保持在5 mmHg以下,表明通过瓣膜注射的生理盐水有效引流。这些有希望的结果突出了小型化鸭嘴阀作为脑积水ICP管理的替代方案的潜力,与传统分流系统相比,它提供了更好的控制和可靠性。需要进一步的研究来评估该瓣膜作为慢性植入物的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信