Mahesh Ramatchandirane, Ponsankaran Rajendran, M P Athira, Kitlangki Suchiang
{"title":"Coniferaldehyde activates autophagy and enhances oxidative stress resistance and lifespan of Caenorhabditis elegans via par-4/aak-2/skn-1 pathway.","authors":"Mahesh Ramatchandirane, Ponsankaran Rajendran, M P Athira, Kitlangki Suchiang","doi":"10.1007/s10522-024-10163-1","DOIUrl":null,"url":null,"abstract":"<p><p>Aging represents the gradual accumulation of alterations within an organism over time. The physical and chemical characteristics of our cells gradually change as we age, making it more difficult for our tissues and organs to self-regulate, regenerate, and maintain their structural and functional integrity. AMP- activated protein kinase (AMPK), a well-known sensor of cellular energy status acts as a central regulator of an integrated signalling network that control homeostasis, metabolism, stress resistance, cell survival and autophagy. Coniferaldehyde (CFA), a phenolic compound found in many edible plants, has multiple biological and pharmacological functions. Our findings demonstrated that 50 µM CFA could significantly activate autophagy and reduce oxidative stress, which enhanced the activity of antioxidant enzymes and increased resistance under oxidative stress. CFA treatment could efficiently decrease reactive oxygen species (ROS) levels and positively enhance the expression of antioxidant genes in Caenorhabditis elegans (C. elegans). On the other hand, CFA did not have any role in the lifespan extension of the several mutants linked to the AAK-2/AMPK pathway and it promotes SKN-1 (Skinhead-1) localization into the nucleus, which modulates downstream gene gst-4 (Glutathione S-transferase). In depth investigations revealed that CFA could lower oxidative stress and enhance the lifespan of C. elegans by activating the PAR-4/LKB-1-AAK-2/AMPK-SKN-1/NRF-2 pathway, with crucial involvement of bec-1 and lgg-1 genes for autophagy mediated lifespan extension. This study might contribute to understanding the interactions and mechanisms that allow natural compounds like CFA to treat age-related disorders among several species.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"26 1","pages":"25"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-024-10163-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aging represents the gradual accumulation of alterations within an organism over time. The physical and chemical characteristics of our cells gradually change as we age, making it more difficult for our tissues and organs to self-regulate, regenerate, and maintain their structural and functional integrity. AMP- activated protein kinase (AMPK), a well-known sensor of cellular energy status acts as a central regulator of an integrated signalling network that control homeostasis, metabolism, stress resistance, cell survival and autophagy. Coniferaldehyde (CFA), a phenolic compound found in many edible plants, has multiple biological and pharmacological functions. Our findings demonstrated that 50 µM CFA could significantly activate autophagy and reduce oxidative stress, which enhanced the activity of antioxidant enzymes and increased resistance under oxidative stress. CFA treatment could efficiently decrease reactive oxygen species (ROS) levels and positively enhance the expression of antioxidant genes in Caenorhabditis elegans (C. elegans). On the other hand, CFA did not have any role in the lifespan extension of the several mutants linked to the AAK-2/AMPK pathway and it promotes SKN-1 (Skinhead-1) localization into the nucleus, which modulates downstream gene gst-4 (Glutathione S-transferase). In depth investigations revealed that CFA could lower oxidative stress and enhance the lifespan of C. elegans by activating the PAR-4/LKB-1-AAK-2/AMPK-SKN-1/NRF-2 pathway, with crucial involvement of bec-1 and lgg-1 genes for autophagy mediated lifespan extension. This study might contribute to understanding the interactions and mechanisms that allow natural compounds like CFA to treat age-related disorders among several species.
期刊介绍:
The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments.
Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.