Sean Harrington, Isaac Overcast, Edward A Myers, Frank T Burbrink
{"title":"Pleistocene Glaciation Drove Shared Population Coexpansion in Eastern North American Snakes.","authors":"Sean Harrington, Isaac Overcast, Edward A Myers, Frank T Burbrink","doi":"10.1111/mec.17625","DOIUrl":null,"url":null,"abstract":"<p><p>Glacial cycles during the Pleistocene had profound impacts on local environments and climatic conditions. In North America, some regions that currently support diverse biomes were entirely covered by ice sheets, while other regions were environmentally unsuitable for the organisms that live there now. Organisms that occupy these regions in the present day must have expanded or dispersed into these regions since the last glacial maximum, leading to the possibility that species with similar geographic distributions may show temporally concordant population size changes associated with these warming trends. We examined 17 lineages from 9 eastern North American snake species and species complexes to test for a signal of temporally concordant coexpansion using a machine learning approach. We found that the majority of lineages show population size increases towards the present, with evidence for coexpansion in five out of fourteen lineages, while expansion in others was idiosyncratic. We also examined relationships between genetic distance and current environmental predictors and showed that genomic responses to environmental predictors are not consistent among species. We, therefore, conclude that Pleistocene warming resulted in population size increases in most eastern North American snake species, but variation in environmental preferences and other species-specific traits results in variance in the exact timing of expansion.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17625"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17625","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glacial cycles during the Pleistocene had profound impacts on local environments and climatic conditions. In North America, some regions that currently support diverse biomes were entirely covered by ice sheets, while other regions were environmentally unsuitable for the organisms that live there now. Organisms that occupy these regions in the present day must have expanded or dispersed into these regions since the last glacial maximum, leading to the possibility that species with similar geographic distributions may show temporally concordant population size changes associated with these warming trends. We examined 17 lineages from 9 eastern North American snake species and species complexes to test for a signal of temporally concordant coexpansion using a machine learning approach. We found that the majority of lineages show population size increases towards the present, with evidence for coexpansion in five out of fourteen lineages, while expansion in others was idiosyncratic. We also examined relationships between genetic distance and current environmental predictors and showed that genomic responses to environmental predictors are not consistent among species. We, therefore, conclude that Pleistocene warming resulted in population size increases in most eastern North American snake species, but variation in environmental preferences and other species-specific traits results in variance in the exact timing of expansion.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms