{"title":"β2-tubulin and its promoter in the brown planthopper: A versatile tool for genetic control strategies","authors":"Jing-Xiang Chen , Chuan-Chuan Zhang , Jia-Wei Sun , Yi-Bing Zhang, Min-Shi Luo, Wen-Qing Zhang","doi":"10.1016/j.ibmb.2024.104244","DOIUrl":null,"url":null,"abstract":"<div><div>At present, the application of CRISPR/Cas9 technology for genetic manipulation in insects is predominantly concentrated on Diptera model species, including <em>Drosophila</em> and mosquitoes. In contrast, non-model insects such as the brown planthoppers (BPH, <em>Nilaparvata lugens</em>), a major insect pest of rice, have received less attention in genetic manipulation due to insufficient tools. Here, the analysis of spatiotemporal expression patterns revealed that <em>β2-tubulin</em> in BPH (<em>NlB2t</em>) was predominantly concentrated in male adults and male testis, exhibiting high expression levels. Knockdown of <em>NlB2t</em> expression by using RNAi resulted in the obstruction of male testis development. Mating between the RNAi-treated males and wild-type females led to a notable reduction in the number of eggs laid and the hatching rate of those eggs by 58.2% and 50.6%, respectively. The longevity of RNAi males significantly increased, and females that had previously mated with RNAi males exhibited a diminished inclination for re-mating with wild-type males. The dual-luciferase reporter assay demonstrated robust promoter activity in the upstream 943 bp of <em>NlB2t</em>, capable of driving Cas9 protein expression <em>in vivo</em> and effectively inducing target gene knockout. These findings elucidated that <em>NlB2t</em> may be a key gene in BPH male testis development and reproduction, as a promising target for sterilization. Its upstream promoter serves as a germline promoter, significantly facilitating the development of genetic control tools based on CRISPR/Cas9 technology in BPH.</div></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"177 ","pages":"Article 104244"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174824001759","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
At present, the application of CRISPR/Cas9 technology for genetic manipulation in insects is predominantly concentrated on Diptera model species, including Drosophila and mosquitoes. In contrast, non-model insects such as the brown planthoppers (BPH, Nilaparvata lugens), a major insect pest of rice, have received less attention in genetic manipulation due to insufficient tools. Here, the analysis of spatiotemporal expression patterns revealed that β2-tubulin in BPH (NlB2t) was predominantly concentrated in male adults and male testis, exhibiting high expression levels. Knockdown of NlB2t expression by using RNAi resulted in the obstruction of male testis development. Mating between the RNAi-treated males and wild-type females led to a notable reduction in the number of eggs laid and the hatching rate of those eggs by 58.2% and 50.6%, respectively. The longevity of RNAi males significantly increased, and females that had previously mated with RNAi males exhibited a diminished inclination for re-mating with wild-type males. The dual-luciferase reporter assay demonstrated robust promoter activity in the upstream 943 bp of NlB2t, capable of driving Cas9 protein expression in vivo and effectively inducing target gene knockout. These findings elucidated that NlB2t may be a key gene in BPH male testis development and reproduction, as a promising target for sterilization. Its upstream promoter serves as a germline promoter, significantly facilitating the development of genetic control tools based on CRISPR/Cas9 technology in BPH.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.