BcWRKY53 promotes chlorophyll biosynthesis and cold tolerance of non-heading Chinese cabbage under cold stress.

IF 6.1 2区 生物学 Q1 PLANT SCIENCES
Xiaoshan Chen, Zhanyuan Gao, Zhanghong Yu, Qiang Ding, Xiaojun Qian, Chenyang Zhang, Chenyu Zhu, Yaolong Wang, Changwei Zhang, Ying Li, Xilin Hou
{"title":"BcWRKY53 promotes chlorophyll biosynthesis and cold tolerance of non-heading Chinese cabbage under cold stress.","authors":"Xiaoshan Chen, Zhanyuan Gao, Zhanghong Yu, Qiang Ding, Xiaojun Qian, Chenyang Zhang, Chenyu Zhu, Yaolong Wang, Changwei Zhang, Ying Li, Xilin Hou","doi":"10.1016/j.plaphy.2024.109398","DOIUrl":null,"url":null,"abstract":"<p><p>WRKY transcription factors are widely involved in plant responses to biotic and abiotic stresses, including cold stress. However, they have not been well studied in the regulation of chlorophyll synthesis and cold tolerance. So it is meaningful to analyze the mechanism under cold stress in non-heading Chinese cabbage. Here, BcWRKY53, a transcriptional activator WRKY-III gene, was identified by a screen upstream of the key chlorophyll synthesis genes BcCHLH and BcGUN4. BcWRKY53 was localized in the cell nucleus and induced to a significant extent by cold treatment. Ectopic expression of BcWRKY53 in Arabidopsis not only increased the chlorophyll content under cold stress, but also improved the cold tolerance. After silencing of BcWRKY53, there was a decrease in chlorophyll content and an increase in cold sensitivity. BcWRKY53 could inhibit self-expression by binding W-boxes in its own promoter. In addition, histone deacetylase 9 (BcHDA9) interacted with BcWRKY53 to inhibit BcWRKY53-mediated transcriptional activation. When ectopically overexpressed, BcHDA9 negatively regulates chlorophyll content and cold tolerance under cold treatment. Taken together, this study demonstrated that the cold-inducible transcription factor BcWRKY53 positively regulates BcCHLH and BcGUN4 under the regulation of self-regulation and BcHDA9 interactions. In this way, BcWRKY53 is actively involved in chlorophyll synthesis and the establishment of cold tolerance, which providing practical theoretical support in molecular characterization of cold tolerance and variety selection of non-heading Chinese cabbage.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"219 ","pages":"109398"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109398","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

WRKY transcription factors are widely involved in plant responses to biotic and abiotic stresses, including cold stress. However, they have not been well studied in the regulation of chlorophyll synthesis and cold tolerance. So it is meaningful to analyze the mechanism under cold stress in non-heading Chinese cabbage. Here, BcWRKY53, a transcriptional activator WRKY-III gene, was identified by a screen upstream of the key chlorophyll synthesis genes BcCHLH and BcGUN4. BcWRKY53 was localized in the cell nucleus and induced to a significant extent by cold treatment. Ectopic expression of BcWRKY53 in Arabidopsis not only increased the chlorophyll content under cold stress, but also improved the cold tolerance. After silencing of BcWRKY53, there was a decrease in chlorophyll content and an increase in cold sensitivity. BcWRKY53 could inhibit self-expression by binding W-boxes in its own promoter. In addition, histone deacetylase 9 (BcHDA9) interacted with BcWRKY53 to inhibit BcWRKY53-mediated transcriptional activation. When ectopically overexpressed, BcHDA9 negatively regulates chlorophyll content and cold tolerance under cold treatment. Taken together, this study demonstrated that the cold-inducible transcription factor BcWRKY53 positively regulates BcCHLH and BcGUN4 under the regulation of self-regulation and BcHDA9 interactions. In this way, BcWRKY53 is actively involved in chlorophyll synthesis and the establishment of cold tolerance, which providing practical theoretical support in molecular characterization of cold tolerance and variety selection of non-heading Chinese cabbage.

BcWRKY53 促进无头大白菜叶绿素生物合成并提高其在寒冷胁迫下的耐寒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信