Functional characteristics and mechanisms of microbial community succession and assembly in a long-term moving bed biofilm reactor treating real municipal wastewater.

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Fuqiang Fan, Mingtao Li, Junfeng Dou, Jiaqi Zhang, Danyi Li, Fangang Meng, Yue Dong
{"title":"Functional characteristics and mechanisms of microbial community succession and assembly in a long-term moving bed biofilm reactor treating real municipal wastewater.","authors":"Fuqiang Fan, Mingtao Li, Junfeng Dou, Jiaqi Zhang, Danyi Li, Fangang Meng, Yue Dong","doi":"10.1016/j.envres.2024.120602","DOIUrl":null,"url":null,"abstract":"<p><p>Moving bed biofilm reactor (MBBR) technology with diverse merits is efficient in treating various waste streams whereas their microbial functional properties and ecology still need in-depth investigation, especially in real wastewater treatment systems. Herein, a well-controlled MBBR treating municipal wastewater was established to investigate the long-term system performance and the underlying principles of community succession and assembly. The system successfully achieved ammonium, TN, and chemical oxygen demand (COD) removal of 96.7 ± 2.2%, 75.2 ± 3.6%, and 90.3 ± 3.8%, respectively, under simplified operation and low energy consumption. The effluent TN concentrations achieved 6.2 ± 1.6 mg-N/L despite the influent fluctuations. Diverse functional denitrifiers, such as Denitratisoma, Thermomonas, and Flavobacterium, and the anammox bacteria Candidatus Brocadia successfully enriched in anoxic chamber biofilms. The nitrifiers Nitrosomonas (∼0.73%) and Nitrospira (∼14.0%) exhibited appreciable nitrification capacity in specialized aerobic chambers. Ecological null model and network analysis revealed that microbial community assembly was mainly regulated by niche-based deterministic processes and air diffusion in the aerobic chamber resulted in more intense and complex bacterial interactions. Environmental filters including influent substrate and operating conditions (e.g., reactor configuration, DO, and temperature) greatly shaped the microbial community structure and affected carbon and nitrogen metabolism. The positive ecological roles of influent microflora and functional redundancy in biofilm communities were believed to facilitate functional stability. The anammox process coupled with partial denitrification in a specialized chamber demonstrated positive application implications. These findings provided valuable perspectives in deciphering the microbiological and ecological mechanisms, functional properties, and application potentials of MBBR.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120602"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2024.120602","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Moving bed biofilm reactor (MBBR) technology with diverse merits is efficient in treating various waste streams whereas their microbial functional properties and ecology still need in-depth investigation, especially in real wastewater treatment systems. Herein, a well-controlled MBBR treating municipal wastewater was established to investigate the long-term system performance and the underlying principles of community succession and assembly. The system successfully achieved ammonium, TN, and chemical oxygen demand (COD) removal of 96.7 ± 2.2%, 75.2 ± 3.6%, and 90.3 ± 3.8%, respectively, under simplified operation and low energy consumption. The effluent TN concentrations achieved 6.2 ± 1.6 mg-N/L despite the influent fluctuations. Diverse functional denitrifiers, such as Denitratisoma, Thermomonas, and Flavobacterium, and the anammox bacteria Candidatus Brocadia successfully enriched in anoxic chamber biofilms. The nitrifiers Nitrosomonas (∼0.73%) and Nitrospira (∼14.0%) exhibited appreciable nitrification capacity in specialized aerobic chambers. Ecological null model and network analysis revealed that microbial community assembly was mainly regulated by niche-based deterministic processes and air diffusion in the aerobic chamber resulted in more intense and complex bacterial interactions. Environmental filters including influent substrate and operating conditions (e.g., reactor configuration, DO, and temperature) greatly shaped the microbial community structure and affected carbon and nitrogen metabolism. The positive ecological roles of influent microflora and functional redundancy in biofilm communities were believed to facilitate functional stability. The anammox process coupled with partial denitrification in a specialized chamber demonstrated positive application implications. These findings provided valuable perspectives in deciphering the microbiological and ecological mechanisms, functional properties, and application potentials of MBBR.

处理实际城市污水的长期移动床生物膜反应器中微生物群落演替和组合的功能特征和机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信