A hybrid approach of transfer learning and physics-informed modelling: Improving dissolved oxygen concentration prediction in an industrial wastewater treatment plant
{"title":"A hybrid approach of transfer learning and physics-informed modelling: Improving dissolved oxygen concentration prediction in an industrial wastewater treatment plant","authors":"Ece Serenat Koksal , Erdal Aydin","doi":"10.1016/j.ces.2024.121088","DOIUrl":null,"url":null,"abstract":"<div><div>Constructing first principles models is a challenging task for nonlinear and complex systems such as a wastewater treatment unit. In recent years, data-driven models are widely used to overcome the complexity. However, they often suffer from issues such as missing, low quality or noisy data. Transfer learning is a solution for this issue where knowledge from another task is transferred to target one to increase the prediction performance. In this work, the objective is increasing the prediction performance of an industrial wastewater treatment plant by transferring the knowledge of (i) an open-source simulation model, capturing process physics, albeit with dissimilarities to the target plant, (ii) another industrial plant characterized by noisy and limited data but located in the same refinery, and (iii) constructing a physics informed transfer learning model by combining (i) and (ii). The results demonstrated that test and validation performance are improved up to 27% and 59%, respectively.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"304 ","pages":"Article 121088"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250924013885","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Constructing first principles models is a challenging task for nonlinear and complex systems such as a wastewater treatment unit. In recent years, data-driven models are widely used to overcome the complexity. However, they often suffer from issues such as missing, low quality or noisy data. Transfer learning is a solution for this issue where knowledge from another task is transferred to target one to increase the prediction performance. In this work, the objective is increasing the prediction performance of an industrial wastewater treatment plant by transferring the knowledge of (i) an open-source simulation model, capturing process physics, albeit with dissimilarities to the target plant, (ii) another industrial plant characterized by noisy and limited data but located in the same refinery, and (iii) constructing a physics informed transfer learning model by combining (i) and (ii). The results demonstrated that test and validation performance are improved up to 27% and 59%, respectively.
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.